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Abstract:- This paper deals with the plane strain vibrations in thermoporoelastic plates in the framework of Biot’s 

theory. Pertinent constitutive relations and governing equations are derived. Frequency equation is obtained in the 

presence of dissipation. In the particular case the frequency equation is obtained in the absence of dissipation. Frequency 

and attenuation is computed as a function of wavenumber. For illustration purpose, three poroelastic solids namely 

sandstone and berea sandstone are employed. 
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I INTRODUCTION 

     The study of wave propagation in thermoporoelastic 

plates has wide applications in many fields such as 

Engineering, Biomechanics and Geophysics. The soft 

tissues in biological bodies are treated as a 

thermoporoelastic media. Nowacki and Sokolowski [1] 

studied propagation of thermoelastic waves in plates. 

Thermoelastic waves in thin plates is investigated by 

Massalas [2]. In the said paper, a mathematical analysis is 

presented to study the wave characteristic of the plate and 

special cases of very short and very long waves are 

discussed. The propagation of plane waves in an infinite 

homogeneous isotropic thermoelastic plate is studied in the 

context of coupled theory of thermoelasticity Sharma et al 

[3]. The effects of plate thickness on the symmetric and 

skew symmetric modes of vibrations are discussed. 

Generalized thermoelastic waves in homogeneous isotropic 

plates is studied by Sharma et al [4]. Valering Salnikov and 

Nigel Scott [5] studied thermoelastic waves in a constrained 

isotropic plate. In the said paper, the boundaries of the plate 

are taken to be traction free and isothermal or insulated. 

Dispersion relations are derived and expanded 

asympotically in the long wave low frequency limit. 

Damping of generalized thermoelastic waves in a 

homogeneous isotropic plate is studied by Selvamani and 

Ponnuswamy [6]. In the said paper, the frequency equation 

is obtained by the traction free boundary conditions using 

the Bessel function solutions. K.L.Verma [7] investigated 

on the dynamic characteristic of thermoelastic waves in 

thermoelastic plates with thermal relaxation time. The exact 

solutions of the displacement, temperature and thermal 

stresses, temperature gradient in an infinite plate of 

arbitrary anisotropy of finite thickness are derived for the 

generalized theory of thermoelasticity with two relaxation 

times. Employing the Biot’s theory [8], Dispersion study of 

plane strain vibrations in poroelastic solids bars with 

polygonal cross section studied by Sandhya Rani et al [9]. 

In this paper, Fourier collocation method is used to solve 

the plane strain problem.  The frequency equation in the 

case of symmetric and anti-symmetric modes are discussed. 

The phase velocity is computed as a function of 

wavenumber in the cases of triangular, square, pentagon, 

and hexagon cross sectional cylinders. Paul and Murali [10] 

studied wave propagation in the thermoporoelastic plate. In 

the paper [10], governing equations of thermoporoelastic 

plate are derived and the frequency equation is obtained for 

stress free and thermally insulated boundary conditions. 

Wave propagation in thermoelastic saturated porous 

medium is investigated by M.D.Sharma [11]. In this paper, 

three longitudinal and one transverse waves in an isotropic 

thermoelastic porous solid are obtained. Relations are 

derived among the temperature of the medium and the 

displacements of fluid and solid particles. However to the 

best of author’s knowledge plane strain vibrations of 

thermoporoelastic plates are investigated. Frequency and 

attenuation is computed as a function of wavenumber, for 

the three types of thermoporoelastic materials and then 

discussed 
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II. GOVERNING EQUATIONS AND SOLUTION OF THE PROBLEM 

The dynamic equations in cartesian coordinate system in the absence of body forces [8] and heat conduction are as 

follows 
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 ,  is the mass density, vc  is the specific heat capacity, K  is the thermal conductivity,  

0T  is the reference temperature, 0  is the relaxation time,  221211 ,,   are the mass coefficients, ),,( wvu  and ),,( WVU  

are the displacements of solid and fluid. s is the fluid pressure, b  is the dissipation coefficient, ij  are the stress components are 

given by [12] 
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In eq. (2), ije ’s are strain components, RQNA ,,,  are poroelastic constants,   is the thermal stress,  T  is the temperature, 

e and  are dilatations of solid and fluid. Substitution ofeq. (2) in eq. (1) the equations of motion for the plane strain problem 

are as follows 
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Now we can assume the solution to the eq. (3) in the following form [13] 
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In all the above 54321 ,,,, CCCCC are arbitrary constants, j  is the complex unity and )2,1( iki is the wavenumber in the  

thi  direction such that the wavenumber 
2

2

2

1 kkk  . Substituting eq. (4) in the eq. (3), we obtain 
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III. NUMERICAL RESULTS 

For the numerical work, the wave propagation is considered along x direction. In this case 02 k and eq. (5) reduces to. 
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Due to the presence of dissipation )(b  nature of the medium, waves are attenuated. For a non-trivial solution, the determinant of 

coefficient matrix is zero. Accordingly we obtain the complex valued frequency equation. 
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Where 2,1,,  jidibA ijijij  and the expression for the ijb and ijd  are given 

below
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a.Particular case  

In the absence of dissipation coefficient )0( b  frequency equation (7) reduces to the following form 
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The frequency equation (7) and (8) is investigated for the following poroelastic solids [14, 15, 16]. The thermoelastic constant 

values are given in [17].  

For sandstone saturated with kerosene (material-1) 
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For sandstone saturated with water (material-2) 
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For Berea sandstone (material-3) 
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(11) 

The complex frequency (7) gives frequency and attenuation 

coefficient as a function of wavenumber. The real part of 

eq. (7) gives frequency of wave, whereas
1Q = 

(2imaginary part of eq. (7)) / (real part of eq. (7)) gives 

attenuation coefficient. Substituting the values of eq. (9), 

eq. (10) and (11) in the frequency equations (7) frequency, 

attenuation coefficient are computed as a function of 

wavenumber. Frequency and attenuation are computed 

using the bisection method implemented in MATLAB, and 

results are depicted in figure 1-5 graphically. Figure 1&2 
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shows the plots of frequency against wavenumber in the 

presence of dissipation )01.0( b and )1.0( b . From 

figures 1, 2 it is observed that the frequency of material-1, 2 

are almost steady and constant and  it is also clear that 

frequency of material-1, 2 are greater than material-3. 

Figure 3&4 shows the plots of attenuation against 

wavenumber in the presence of dissipation )01.0( b and 

)1.0( b . From figures 3, 4 it is observed that attenuation 

of material-3 is greater than that of material-1 and 2. From 

figures 1-4, it is also clear that as the dissipation increases 

attenuation and frequency increases. As the dissipation 

increases the values of frequency and attenuation are almost 

constant for )1.0( b  and ).1( b Figure 5 shows the 

plots of frequency against wavenumber in the absence of 

dissipation. It is observed that as the wavenumber increases 

frequency increases for all the three materials. From figures 

1-5 it is also clear that frequency is greater in the absence of 

dissipation than that of frequency and attenuation in the 

presence of dissipation.  

 

Fig: 1 Variation of frequency with wavenumber at dissipation (b=0.01) 

 

Fig: 2 Variation of frequency with wavenumber at dissipation (b=0.1) 
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Fig: 3 Variation of attenuation with the wavenumber at dissipation (b=0.01) 

 

Fig: 4 Variation of attenuation with wavenumber at dissipation (b=0.1) 

 

Fig: 5 Variation of frequency with wavenumber at dissipation (b=0) 

IV. CONCLUSION 

Employing Biot’s theory, plane strain vibrations in 

thermoporoelastic plates are investigated. Pertinent 

constitutive relations and governing equations are derived. 

Frequency is computed for three poroelastic solids. The 

complex valued frequency equation is reduced to real 

valued equations which gives that frequency and 

attenuation. Attenuation values are greater than that of 

frequency. In the absence of dissipation as the wavenumber 

increases frequency increases for all the three 
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materials.Similar analysis can be made for different 

poroelastic constants if pertinent values are available. 
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