
|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

INTERPOLATION AND REDUCTION ALGORITHMS FOR

DISCRETE MODELING OF POCKET MILLING

Munish Kumar, Dr. Pankaj Khatak*

Mechanical Engineering Department, Guru Jambheshwar University of Science & Technology, Hisar 125001, India

*Corresponding Author Email: pankajkhatak@gmail.com

Abstract: Pocket milling is one of the fundamental machining processes in the manufacturing industry. A

number of researchers has presented methods and techniques for optimal milling of a pocket. Most of the

methods are based on work area approximation schemes using discrete elements such as squares. This

paper presents interpolation algorithms for modeling of work area of a pocket. For decreasing the discrete

squares, reduction algorithms are also presented. The algorithms are implemented in an optimization

problem of pocket milling toolpath. Results indicate that while interpolation algorithms effectively model

the design element, reduction algorithms greatly decrease the search space of the optimization methods

leading to a decrease in convergence time.

Keywords: Discretization, interpolation, reduction, optimization.

--

I INTRODUCTION

In a typical machining process, a cutting tool

is required to follow a sequence to machine given part.

The part may consist of a number of design features

such as pockets, contours, or holes[1]. A tool-path is

generated which covers all these design features at

least once. This generation of toolpath is accomplished

either manually or using a CAM software such as

MasterCAM, ESPIRIT, etc. In both the case, a set of

points is marked onto the work piece which serve as

an entry/exit for cutting tool. The design feature itself

consist of a large number of points in general. This can

be explained with the fact that when a CNC controller

receives a command for linear interpolation through

G01, a number of points between the end points are

calculated and fed to the actuators in sequence. The

drives of axes are actuated in pulses of motion. Tool

seems to be moving in a straight line but at micro level

it moves in a zig-zag motion since feed for x and y-

axis are fed one by one insteps[2].

The accuracy of a toolpath depends largely on

these interpolation points. Therefore, a large number

of points are calculated to obtain a perfect straight-line

motion. It implies that these interpolation points define

a particular design feature and hence a part. For this,

interpolation of such movements is performed in this

researchalso[3].SimilartoaCNCcontroller,the

--

number of points obtained here is also very large. A

toolpath is considered as a sequence of these points.

Such a large number of points makes it

difficult to find an optimal sequence or a toolpath.

This is because of possibilities of a vast search space.

To explore such large spaces is a tough task for any

optimization problem and is not feasible in most of the

cases. Computational complexity increases while

processing the points leading to higher costs and time

disadvantages. Task can be simplified if the search

space is reduced so as to make optimization techniques

able to handleit[4].

The process of discretization provides a good

method of approximation of a workpiece. Using a

discretized set of points or squares, a part can be easily

approximated. Hence a small number of points is

necessary to find an optimal sequence rather than

using a large set of points[5]. This reduces the search

space for an optimization method along with a

decrease in computational complexity. Due to these

reasons a discretization framework is proposed in this

research based on the concept of design elements and

squares grid. Such discretization techniques are

discussed by [6], [7] and[8].

A prepared drawing of part marks various

dimensions and features of that part such as pockets,

holes, fillets, contours, etc. These design features are

needed to be formed on a workpiece through

WWW.IJASRET.COM 31

mailto:pankajkhatak@gmail.com
http://www.ijasret.com/

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 32

machining. Efforts are made to ensure that proposed

design features are cut with efficiency and quality. It is

the assignment of a planner or programmer to

efficiently machine those features onto the workpiece

using adequate cutters[9]. A process plan is prepared

for the same consisting of several cutter locations

along with machining parameters associated with

them. After selecting an appropriate cutter for current

operation, cutter location data (CL data) is used to

create toolpaths. It connects a number of cutter

locations on workpiece in sequence which cutting tool

has to follow to machine a particular design feature

[10]. A number of optimal size cutters and relative

toolpaths are needed for creation of an efficient

process plan. Machining parameters, on one hand,

influence the selection of cutters and toolpaths, but

design features play a dominant role in efficient

preparation of toolpaths and processplans[11].

S. Omirou points out that set of arbitrarily

oriented primitive shapes such as rectangular blocks,

circular cylinders, spheres, cones and tori is sufficient

for modelling 90% of machined part [12]. Typical

design features include rectangular pockets, circular

pockets, holes, slots, fillets, chamfers, contours etc.

These design features can be further segmented into

design elements. The design elements are considered

here as basic units which shape a design feature and

hence a part. Typical elements include lines and arcs.

A set of one or more design elements connected

together constitute a design feature. For instance, a 3D

part having 3 design features is shown in Figure1.

The design elements of a part lead to

separation of areas that are to be machined, known as

Figure 2. 3D part having three design

features.

machinable area, from other areas of workpiece.

Machinable area is the area of actual concern where a

cutter is placed/moved to cut a design feature.

Different parts of machinable area are visited by a

cutter in sequence for successful machining of

part/component. Therefore, a cutting strategy or

toolpath can be defined as the sequence of cutter

locations of an element inside machinable area.

Usually, main objective of a typical toolpath

optimization is to obtain such a cutting strategy or

toolpath which allows complete cutting of all the

elements in least amount of time. Furthermore, time

taken to cut a part is characterized by the distance

travelled by a cutting tool during machining. Short

distances or tool travels lead to shorter time periods. It

is thus obvious that distance travelled by a tool

dependsuponthecutterlocationsorsimplypointson

Figure 1. Discretization framework showing, a. Features of part, b. Approximation of given part by

square grid.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 33

workpiece visited by it. Figure 2b shows the

discretized model of the 3D part shown in Figure 1.

The design features are represented with the help of

discrete squares. A toolpath is required to visit each

discrete square to machine the givenpart.

In this paper, algorithms are presented for

implementation in discrete modelling of pocket milling

work area. Section 2 discusses the interpolation algorithms

for linear, circular and pocket elements. Section 3 presents

reduction algorithms for linear, circular and rectangular

pocket. In Section 4, tests are conducted to validate the

performance of algorithms and results arepresented.

II INTERPOLATION OF LINEAR, CIRCULAR AND

POCKET ELEMENTS

Theinterpolationalgorithmoran„interpolator‟isrespon

sible for calculation of data points for a design element.

These calculations, in turn, are based on standard equations

of geometric entities such as straight line, circle, etc. The

main purpose of an interpolation algorithm is to calculate

intermediate data points between points defined by user.

This includes a number of calculations to obtain valid and

correct interpolation data points. A simple and easy to

implement method is to use standard equations of

geometrical entities using which x and y-coordinate values

of a number of data points at regular interval can be

calculated. The so-obtained x-y values are used to activate

corresponding elements ofworkMat.

The interpolation algorithms are developed for

each design element individually. Interpolator of linear

elements is based on standard equation of straight line while

the interpolator for circular elements is based on standard

equation of a circle, discussed in further sections. Modeling

of rectangular pockets is not based on this approach, rather a

more direct technique is implemented. This approach

provided a simple method of modeling rectangular pockets

and avoid complex calculations. The data obtained from

user for a particular design element is transferred to

interpolator of that element. Generally, construction data

such as end points, radius, length, width, etc. are required by

an interpolator. It is programmed to obtain such data and

calculate intermediate carry out furtherprocessing.

2.1 LinearInterpolation

The interpolation algorithm for a linear element is

shown in Figure 4. It is based on standard equation of a

straight line, . This equation canbe modified

as shown below,

The above equation is used to calculate x and y coordinates

of a linear element. By putting the value of x, corresponding

value of y can be easily calculated, given the two end points

(x1, y1) and (x2, y2). In this context, first slope of the line is

calculated using below formula,

Based on the value of slope, selection of the

coordinate to be supplied to the equation of line is

performer. Figure 3 shows slope values of a straight line. If

the value of slope is greater than 1, values of x-coordinate

are generated at regular interval within the range of [x1, x2].

Now, for each value of x-coordinate, a value of y-coordinate

is calculated by putting the variables in the equation. And if

the value of slope is less than one, y-coordinates are

generated at regular intervals and corresponding values of x-

coordinate are calculated through the equation. The number

of points generated between two end points of any line is

thrice the distance between the twopoints.

After all the data points have been calculated, x and y-

coordinate values are stored in respective arrays and

transferred for square activation. It has been discussed

earlier that the x and y-coordinate values are rounded off to

their nearest integer values. Then, squares present atthe

Figure 3. Values of slope of a straight line.

location of these points are activated by assigning

„1‟tocorresponding element of workMat. In this way, a

linear element is added to the workpiece. All the data is

stored in arrays and transferred to the decision maker (DM)

and visualized on graphs. DM stores all points combined

with their data in pData array.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 34

Figure 4. Linear interpolator.

2.2 CircularInterpolation

The principle of a circular interpolator is similar to

a linear interpolator. It is based on standard equation of

circle, which is,

This is the equation of a standard circle with radius

„r‟and centreat origin.This equation is used to calculate x and

y coordinate values of data points. The interpolation of a

circular arc is processed in three steps (see Figure 7):-

1. Generation of circle atorigin.

2. Shift circle to actual centerpoint.

3. Trim circle to create desiredarc.

Figure 5. Full circle at origin.

From user input, the values of end points, and

radius are retrieved at the first step. Then a circle with same

radius is generated at origin. This is accomplished by

calculating the data points of the circle, i.e. (X0, Y0), using

above equation. For this purpose, values of x-coordinate at

regular interval are generated. To ensure smooth

approximation of the circle, the distance between points is

taken as 0.001 mm (1 micron). For these x-coordinates,

value of y-coordinates is calculated. Values of only upper

half of the circle are obtained in this way (Xupper, Yupper)

as shown in Figure 5. Therefore, lower half of the circle

(Xlower, Ylower) is obtained from upper circle. This can be

done by reversing Xupper and taking negative of Yupper.

The full circle of at origin would have coordinates X0 =

[Xupper; Xlower], Y0 = [Yupper; Ylower].

Based on the end points and radius of the arc, the

Figure 6. Mechanism of circular interpolator, a. Shift circles to actual centers, b. Select and trim circle to obtain

arc.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 35

Figure 7. Circular interpolator.

center of arc is calculated in the next step. This can be done

using above equation of circle. By putting the values two

equations are obtained as: -

These two equations can be solved for h and k after

specifying the values of (a1, b1), (a2, b2) and r. The

solution to the equations yields two center points, viz. (h1,

k1) and (h2, k2). This implies the fact that there can be two

circles of similar radius passing through any two given

points. The full circle (X0, Y0) can now be shifted to these

center points as shown in Figure 6(a) in red and blue. This is

performed by adding value of h to each of the x-coordinates

and k toy-coordinates.

These two circles give two possible arcs between points

P1 and P2, one in clock-wise direction and the other in

counter-clockwise direction. To obtain required arc, one of

the circles needs to be selected and trimmed. This selection

is made on the basis of direction of the arc as specified by

user. So, based on the direction of arc and orientation of

points (P1 and P2) with respect to each other, one circle is

selected and the other gets deleted. In the next step the

circle is trimmed to obtain arc. For this, two boundary

conditions are applied to both the points, each along x and

y-axis. These conditions are also based on the orientation of

the points P1 and P2. For example, in Figure 6(b), the blue

circle is selected and boundary conditions are applied. For a

point (Xm, Ym) on the periphery of the circle to lie within

the boundary, the conditions are as follows,

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 36

,

All points of blue circle satisfying the boundary

conditions are retained while deleting others. This trimming

process of the circle gives an arc in clockwise direction

between the points P1 and P2. Similarly, to obtain an arc in

counter-clockwise direction, red circle is selected. In that

case, the boundary conditions would be,

,

The orientation of points plays a vital role in selection of

circles and the boundary conditions. After trimming the

circle, so obtained x and y-coordinates of the arc (X, Y) are

then transferred for square activation. The process of square

activation of an arc is similar to that of a line discussed in

previous section where elements of workMat are

assigned„1‟foractivation.Theindexofactivesquaresarestoredan

d transferred to the decision maker (DM) which combines

them with corresponding construction and machining

attributes.

2.3 Rectangular Pocket Interpolation

The interpolation of a rectangular pocket is not actually

an interpolation process. But it is a more direct approach

than interpolation and does not involve the calculation of

data points. As discussed earlier, after defining the

dimensions of a pocket, user is required to specify location

of the pocket in terms of a base point. It can be any of the

four corners of the pocket. The primary base point is the

lower left corner of pocket which serves as a starting point

for interpolation. Any base point can be chosen by the user,

and by some arithmetic means it is transferred to the lower

left corner in background.

A loop is initialized from this point to process the points.

In every iteration of the loop points are considered row-wise

as shown in Figure 8. The activation of squares takes place

within the loop while processing each point. The points are

constrained to length and width of the pocket. Therefore, no

point lying outside the dimensions of pocket is considered.

The iterations are continued until the last point

indicated in the figure. So, loop is terminated after this

point is processed, signifying interpolation of all the

points of a pocket. The index values of all these points

is stored in an array during the iterations. After

completion of the process, index values obtained from

the loop are transferred to the decision maker (DM) in

the form of X-Y values of points.

Hence, a more direct approach for rectangular pockets

is used in which no complex calculations are needed.

Also, the process of activation takes place during

iterations. Therefore, no separate process is required

for square activation as in case of linear and circular

interpolators where both processes are performed in

two separate steps.

III REDUCTION OF DISCRETE POINTS OF
DESIGN ELEMENTS

Reduction is a process of reducing the number of

activated squares for an element. This process is

carried out after interpolation algorithms have

successfully calculated data points for all the elements

defined by user. Before executing reduction

algorithms, data arrays need to be verified and

validated against any discrepancies. The main data

arrays required by reduction algorithms is pData and

toolData. Similar to interpolation algorithms, separate

reduction algorithms are developed for linear/circular

element and for rectangular pocket. The main

algorithm for reduction is shown in Figure9.

Figure 8. Rectangular pocket interpolator.

Validation of data is performed by pressing

Activate button on the control panel. When this button

is pressed, background algorithms acquire all data

arrays from the decision maker. These data arrays are

then passed through various pre-defined set of

conditions. A data array is considered as validated if it

satisfies all the conditions. If any data array is does not

qualify any condition, an error is issued to the user

asking for data correction. Validated data arrays are

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 37

then coupled together in a structure data type, named

vars. This structure facilitates easy availability of

complete data to algorithms at a single place.

Figure 9. Flow-chart of main reduction algorithm.

Decision maker (DM) transfers complete vars

structure and required data is extracted by reduction

algorithm through simple commands. From this

structure, pData and toolData are taken out and stored

in local storage spaces. In the next step, each element

is separated from pData along with complete

construction and machining attributes. This separation

is performed easily as the element number (eCounter)

of an element is associated with every point of that

element. The separated elements are stored in a cell

named „q‟ where points bearing same eCounterare

storedcollectively.

The separation of elements is necessary for

execution of reduction algorithm. This is because it

deals with each element separately and calls

corresponding reduction function or algorithm. After

separating the elements, they are transferred to main

loop of the algorithm. This loop is executed till every

element is reduced.

At the start of the main loop, one element is

retrieved from q cell. It also supplies the radius value

for the current element which distinguish the element

as linear, circular or pocket. For this element, the

points lying on the edges or corners are obtained

through an algorithm named „EPSA‟. It stands for

„Edge PointSearch Algorithm‟, and decides which point

are present on the corners (in lines and arcs) or on the

edges (in rectangular pocket). It is worth mentioning

that a reduction process is accelerated from opposite

ends at the sametime.

Based on the radius of current element, decision to

call a reduction algorithm for the element is made. For

all linear elements, the radius is always kept 0,

whereas for a rectangular pocket, it is 1. However, a

circular arc always have a radius greater than zero.

The reduction process of a line and arc is performed

by asingle function named „LCERA‟, „Linear

&CircularElementReductionAlgorithm‟.Forapocket,it

isperformed by „RPERA‟, „Rectangular Pocket

ElementReduction Algorithm‟.

These reduction algorithms perform reduction on

the element and deliver reduced points. These reduced

points represent the index values of R-active squares

on the grid, and stored in an array rpData. Every

element defined by the user passes through the loop by

turn and reduced points are stored thereby. When all

elements have been processed, the loop terminates. At

the termination, the reduced points of every element

stored in rp Data are transferred collectively to a new

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 38

array rpData2 while previous array gets deleted. The

rpData2 serves as a temporary storage only and after

organizing the data points in correct way, they are

transferred again to newly created rpData array.

At the end of this reduction process when all

reduced points are retrieved from the reduction loop, it

can now be used to modify previous data of all

elements. It can be noted that rpData contains only X-

Y coordinates of the points and no other data. The

pData, which contains all the data in combined form,

is modified according to this array. As a safety

precaution, pData is not modified directly, but first a

copy of this array is prepared. This new array is then

modified as reduced points and the data concerned is

kept and other points as well as their data is deleted.

After completion of modification process, which is

performed in a loop, provisions are made to check data

validity and other discrepancies. At last, results are

shown on screen and the modified array replaces old

pData, thus reducing the number of points or say,

number of active squares.

3.1 Edge Points Search Algorithm(EPSA)

The primary purpose of this search algorithm is to

determine the points lying on the corners or at edges.

We have discussed above how reduction process takes

place. The process starts simultaneously from opposite

ends, i.e. from both end points in case of line and arcs.

In case of rectangular pocket, the reduction process is

performed in two rounds, i.e. first from both upper and

lower edges, and then from both left and right edges.

Therefore, determination of these corners and edge

points becomes a necessity.

The data related to the element under reduction is

transferred to EPSA in the main reduction loop. After

receiving the data, radius is checked to determine the

type of current element. If it is a line or arc, then the

two end points are placed in an array (Edges) and

transferred back to the main loop. It is a simple

process and does not take much computational efforts.

But to process a pocket, a loop is initialized and all

points of the pocket element are passed through

theloop.

It is important to understand default sequencing of

the points of an element first. When the grid is mapped

as a matrix array and active squares are assigned a

value of 1, the location or index of these active squares

are stored in pData array. The points are arranged row-

wise in the array along with their associated data, i.e.

all points in first row, then second row, and so on. It

can be observed that all points in a row are collinear as

well as adjacent to each other. This property of point

arrangement is useful for determining the points lying

on the edges. While in loop, three consecutive points

are selected simultaneously at every iteration. These

points are then passed through two conditions related

to adjacency and collinearity. It is evident that

condition of adjacency and collinearity breaks between

last points of one and first point of the second row. For

instance, points in first row are all collinear as well as

adjacent from 1 to 5. The last pair of three point

satisfying this condition is of points 3, 4 and 5. The

next pair would be 4, 5 and 6, in which first two points

are adjacent (4 and 5) and three points are not

collinear. This is the first condition. For every such

pair of three points where none is collinear and first

two are adjacent, the middle point belongs to the right

edge and hence stored in C2 array. Similarly, if none

are collinear and last two points are adjacent, then the

middle point belongs to the left edge which is stored in

C1 array. This procedure is repeated until every point

the element is processed.

Thepointsshadedinred(6,11,16,21)arestored in C1 and

those in blue (5, 10, 15, 20) are stored in C2. In this

process the first and the last points, viz. point 1 and 25

cannot be checked through adjacency and collinearity

conditions as they are no points to pair with.

Therefore, the first point is added at top of C1 and the

last point is added to the bottom of C2 to obtain

complete left and rightedges.

The above loop derives only left and right edges

from given points of the element. No complex

procedures are needed to obtain the upper and lower

edges. The points in first row of the element form the

lower edge, excluding the end points. Similarly, the

points in the last row between two end points form the

upper edge. It is worth mentioning here that a point

included in left or right edge need not be included in

upper or lower edge. Thus, points 2, 3, and 4 form the

lower edge, while 22, 23 and 24 form the upper edge.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 39

All the three edges obtained in this way are stored in

different arrays named edge1, edge2, edge3, edge4.

These arrays are then combined in a single array

named Edges and transferred to the main reduction

algorithm for further processing.

3.2 Linear and Circular Element Reduction
Algorithm(LCERA)

The reduction process is described in previous

sections. Reduction of a linear element as well as

circular element are carried out by a single algorithm

function. This is mainly due to the fact that both the

entities have two end points and interpolated data

points in between. Reduction is initialized from both

end points at the same time. This reduction procedure

of the elements is called „Linear and Circular Element

Reduction Algorithm (LCERA)‟. This can be regarded

as a sub-function of main reduction algorithm. This

sub-function is completely controlled by main

algorithm and called uponrequirement.

LCERA is complex algorithm constituting a

number of calculations and processes through loops

and conditions. The working of LCERA is shown in

Figure 13. It is called by the main algorithm when it

encounters a linear or circular element and transfers

data of elements in an array Element. The radius of

tool drives the process forward eliminating the points

lying inside the tool vicinity. For reduction of a line or

arc, the tool radius must be larger than the distance

between the end points of line or arc. If it is greater

than the distance, all the points would lie inside its

vicinity and hence every point would be eliminated.

To avoid this problem, a condition is applied at the

beginning of main loop of LCERA to check the radius

value of tool against the distance between endpoints.

Figure 12. Mechanism of LCERA.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 40

Figure 14. Reduced points obtainedat
successive iterations.

Figure 13. Flow-chart and working of LCERA.

In this process, reduction is initialized from both the end

points simultaneously. The end points are considered as

„cornerpoints‟whileremainingpointsbetweenthemare

termedas„middlepoints‟.Forinstance,inFigure12(a),a1and a2

(in red) are the corner points while others are middle points.

These points are sorted in the beginning by algorithm. After

selecting the corner points for current iteration, the search

for next corner points is triggered. The search is carried out

from the middle points only, ignoring any other points

which lie out of bounds of both end points. To get the

indices of middle points, indices of corner points are

determined first. The indices between these two values

denote the middle points. All these middle points are stored

in an array named dElement, copied from Element. This is a

temporary array, and the search of next corner points is

performed involving only the points stored here. To do so,

the distances of all points in dElement from both corner

points is calculated. This is done in a loop and the values are

stored in arrays d1 and d2, where d1 contains value of

distances of all dElement points from first corner point, and

d2 from second corner point. From all these distances, the

value of distance nearest to the tool periphery are obtained

from both d1 and d2, and stored in a11 and a22. It can be

noted that the distance stored in a11 is closest to a1 while

that in a22 is closest to a2. Before progressing further, a

termination condition is set up at this point. The condition

implies that a11 and a22 must not be empty. If a11 and a22

are empty it means that no point is closest to a1 and a2,

respectively. This condition is used to terminate the loop

and return values obtained so far. The condition checks the

values of thus obtained closest distances (a11 and a22).

There might be some cases where no such point exists in

dElement which have the distance as per above specified

condition. This happens whenever all points of dElement lie

within the vicinity of the tool, or the two corner points are

so close to each other that there is no middle point in

existence (in dElement). In these two cases, it is concluded

that all points of the element have been processed and no

further reduction can take place. The arrays a11 and a22 in

termination cases are found to beempty.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 41

In the next step after termination criterion in overlooked,

the points located at these closest distances are obtained by

first finding the location/index of these distances in d1 and

d2 arrays and then getting the points from dElement lying at

those locations. These new obtained points are then stored

in a11 and a22, replacing previously stored distance values.

Thus, the points closest to tool periphery from both end

points are a11 and a22, shown in Figure 12(a) (in blue).

These two points are stored in a local array namedrpdata.

Both corner points and middle points keep changing at

every iteration. The new points obtained, a11 and a22,

replace previous corner points a1 and a2. The next iteration

continues considering new corner points. In this iteration

middle points would limit to new corner points only.

Further corner points obtained in this iteration would again

be stored in rpdata and the process continues. In this way,

till the last iteration of the loop, a set of corner points is

obtained. These are termed as the reduced points of the

element. The linear element shown in Figure 12 would be

reduced after three iterations. The points obtained at

successive iterations i1, i2 and i3 are shown in Figure 14. In

this case, the loop terminates after iteration i3 is completed.

After i3, all the remaining points would lie in the vicinity of

the tool or there may be no further points. Thus, the

termination criterion is satisfied and points obtained till i3

iteration in rpdata are returned by thealgorithm.

The array rpdata contains all points obtained through

iterations. This array is then copied to a global array named

rpData which is then returned back to the main reduction

algorithm. This loop is able to reduce a linear and circular

element of any size and dimensions. The algorithm is called

bythe main reduction algorithm and is not available

explicitly to other algorithms and functions.

3.3 Rectangular Pocket Element ReductionAlgorithm

(RPERA)

The reduction algorithm developed for reducing a

rectangular pocket element is „Rectangular Pocket Element

ReductionAlgorithm(RPERA)‟.Thisalgorithmissimilarin

function to LCERA. The key difference between the two

algorithms is that while LCERA deals with one corner point

from both ends, RPERA deals with a set of corner points

first at left-right edges and then upper-lower edges. This set

of corner points contains the points lying at an edge of the

pocket. These edge points are supplied by Edge Points

Search Algorithm (EPSA). All points lying on one edge are

processed simultaneously by the algorithm. Therefore, this

algorithm comprises of a number of loops, more than that in

LCERA. Also there is an increase in computational

complexities due to presence of loops, data storage arrays

and a large number of calculations. As a pocket contains

vast number of active squares, this algorithm has to deal

with a rich space. Due to these reasons, it became obligatory

to make this algorithm as compact and effective as possible

to avoid any discrepancies. It can be said that RPERA is one

of the most complex algorithm of the wholeframework.

Figure 14. Reduced points obtained at successive iterations.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 42

Figure 15. Flow-chart and working of RPERA.

The working of RPERA is shown inFigure 15. This

algorithm, similar to LCERA, is completely controlled by

the main reduction algorithm. The main algorithm supplies

necessary information related to the element and tool in the

form of an array Element. Here also, a termination condition

at the beginning of the main loop is present. This condition

is similar to the first termination condition of LCERA. In

this case, the size of the tool is compared with the length or

width of the pocket (whichever is the shortest). For a

successful reduction, the radius of tool must be less than

half the length or width of the pocket, L. Further execution

takes place if this condition is not satisfied, otherwise an

error is issued to the user informing about tool size. In the

next step, all edges in Element are sorted and re-organized.

The edges retrievedfrom EPSA,i.e. edge1, edge2, edge3,

and edge4, are sorted as edgLeft, edgRight, edgDown and

edgUp, respectively and stored againinElement.The edge is

also created to assist the loop in creating opposite edges

simultaneously.

As indicated in Figure 15, a number of loops are present i

the algorithm. Of them, Loop 1 is the main loop that

executes all other sub- loops such as Loop 1.1 and Loop 1.2.

There are also two sub-

loopofLoop1.2,indicatedasLoop1.2.1andLoop

1.2.2. The main loop is executed twice, once for upper-

lower edges and again for left-right edges. Each time, two

oppositeedgesareselected,startingfromupperandlower

Figure 16. Axis bounds (upper and lower edges).

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 43

Figure 17. Mechanism of RPERA

Figure 18. Various distances between new and old

edges.

Figure 19. Various distances for left-right

edges.

Edges. This set of edges is retrieved from allEdges array

as shown in Figure 16, first edge (edgDown) is copied in

edge1 and second (edgeUp) in edge2. Both these edges are

then stored in a new array named udEdges. The points lying

on both these edges are considered as the corner points.

Similar to LCERA, the middle points between upper and

lower edges are copied to dElement from Element. The next

corners are to be searched from dElement. For sorting of

elements to dElement, a sub loop of the main loop (Loop

1.1) is used. In this loop, at every iteration a points from

Element is selected, Pm with coordinates (Xm, Ym). The

condition for entry of a point in dElement is applied to this

point. According to this condition, the x-coordinate of the

point,

Xm, must lie between minimum and maximum value of x-

coordinates of an edge (i.e. X1 and X2). Similarly, the y-

coordinate of the point, Ym, must lie between minimum and

maximum values of y-coordinate of both edges (i.e. Y1 and

Y2), as shown in Figure 16. All points satisfying this

condition are copied from Element to dElement.

In the next step new corner points are searched from

dElement, Loop 1.2 is employed for this purpose. This loop

also consists of two iterations, one for each edge. In the first

iteration, first edge stored in udEdges is selected, i.e. edge1.

Now, from all the corner points which constitute this edge

distance of all middle points is calculated. This requires a

lot of computational time as the number of points under

processing is very large. Loop 1.2.1 performs these

calculations;foreachcornerpoint„I‟,thedistanceofamiddlepoint

s„j‟isstoredinanarraydj,i.Asamatteroffact, for first corner

point the distances of all middle points are kept in the first

column of d, and for second corner point, in second column,

and so on. After every point has been processed, number of

columns of d would be equal to the number of corner points,

and number of rows would be equal to total number of

middle points in dElement. As the distance of every middle

point from corner points has been calculated, new corner

points can now be obtained using these distances. This

process is similar to that in LCERA where points closest to

the tool periphery are selected for a corner point on both

sides. Here in this case, all corner points of edge1 are

processed simultaneously as compared to LCERA. In other

words, points closest to tool periphery are obtained for

every corner point one by one. This is accomplished through

a loop (Loop1.2.2).

Foracornerpoint„p‟,correspondingcolumnofdistances is

copied from multi-column array d and stored in a temporary

single-column array D. This array changes at every iteration

as values of distances for current point is copied to it. From

the values of distances the closest distance (a) to tool

periphery is searched and its index inthe

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 44

column is saved in array I. There can be multiple values of a

because of more than one point satisfying the above

condition of closeness. In that case the number of indices

would be more than one, that is, I would contain more than

one index. The points present at these indices in dElement

would be the next possible corner points. A possible corner

point means that it has to pass through a condition to be

selected as a corner point. Note that one condition of axis

bounds has already been applied while copying points from

Element to dElement as discussed previously. The next

condition implies that the new corner points must not lie on

the same axis as old corner point (y-axis in case of upper-

lower edges and x-axis for left-right edges). The points not

satisfying this condition are eliminated while other are

retained and stored in array data. Loop 1.2.2 processes all

corner points of edge1 and new corner points are stored in

data array. In the next step, these corner points are

transferred to array rpdata1 while array data is erased to be

used for next iteration. The second iteration of Loop 1.2

takes place considering edge2 now. The same process is

repeated for all corner points of edge2 in Loop 1.2.1 and

Loop 1.2.2. After processing of all corner points the values

are stored in data array. The new corner points for edge2 are

then transferred to rpdata1 array.

These new corner points for both the edges constitute

new edges as shown in Figure 17. At this point in Loop 1, a

termination condition is applied. This is the only

termination condition in entire algorithm. To check the

condition, three types of distances are calculated between

old edges and new edges. These distances are shownin

Figure 20. Axis bounds for left-right edges.

Figure 18, namely d1, d2 and d3. The distance d1 is

calculated between y-coordinate of edge1new and edge1, d2

is calculated between y-coordinate of edge2 and edge2new,

and the distance d3 is calculated between both the new

edges, i.e. edge2new and edge1new. These distances are

used to check the validity of newly obtained edge. For a

new edge or set of two edges to be valid, d1 and d2 must be

equal to the tool radius, and d3 must be greater than 1 not

zero or negative. If the set does not qualify this validity test,

termination condition forces the loop to break and halt

further execution. In case when the edges are found to be

valid, they replace both old edges; after which they are

stored in new array named rpdata (not to be confused with

rpdata1 array, see note on next page). This array is the main

storage array of Loop 1 where all newly obtained edges

(corner points) are stored.

The new points obtained in this iteration are considered

as corner points for the next iteration. Taking these into

consideration, above procedure is repeated to get another set

of

Figure 21. Reduced points obtained after completion

of algorithm.

corner points. This process is repeated a number of times to

obtain sets of corner points. Only when the edges formed by

corner points are close enough that no further reduction is

possible, termination criterion halts the processing. All the

corner points obtained through iterations are stored in

rpdata. Note that these pointsarethereducedpointsforupper-

loweredges.Inthe

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 45

Figure 22. A clutch bell (3D Model).

next step, second iteration of Loop 1 is initialized. This time

the edges to be considered are left-right edges instead of

upper-lower. It has discussed previously that reduction for

upper-lower edges takes place considering all points of

Element. From these points, reduced points are obtained.

Now, for left-right edges not all points are considered but

reduced points of upper-lower edges are taken into account.

In this way, points reduced in vertical direction would now

be reduced horizontally. Hence, left and right edges are

retrieved from allEdges and stored in edge1 and edge2,

respectively. Furthermore, edge1 and edge2 are transferred

to udEdges as in previous iteration.

Next step follows copying points to dElement for further

processing. As stated above, the points are copied from

rpdata which contains previously reduced points. From

corner points of left-right edges, new corner points are

obtained through Loop 1.2. Same procedure is repeated in

this case as for upper-lower edges. Loops 1.2.1 and 1.2.2 are

executed similarly to find corner points. The conditions of

axis bounds remain the same in this case too apart from a

few modifications. These condition are shown in Figure 19.

The only visible change is the orientation of the edges, other

bounds remain similar to previously discussed bounds for

upper-lower edges. Based on these conditions, points from

rpdata are copied to dElement which is then followed by

calculation of distances. The closest distances are

determined and corresponding points from dElement are

obtained which constitute new edges. But these edges have

to be valid to be used for future iterations. Therefore, a

validation test similar to previous case is used, shown in

Figure 19. To qualify as valid edges, values of d1 and d2

must be equal to the tool radius, and d3 must be greater than

1. Edges qualifying these conditions then replace the old

edges (corner points) and serve as edge1 and edge2 for next

iteration. These edges or points are stored in rpdata1 and

after completion of all iterations, complete set of points is

stored in rpdata array. In this way the points obtained after

reduction of upper-lower edges are again reduced with

respect to left-right edges.

After all iterations have been completed and all corner

points are obtained, they are then transferred to array rpData

for output. We have seen that reduction of linear or circular

elements (LCERA) yields a set of points at some distance

from each other. In case of rectangular pocket (RPERA), a

grid pattern of reduced points is obtained, which means the

points lie in two directions. Figure 21 shows the reduced

points of the rectangular pocket. It can be seen that all

points of the rectangular pocket have been reduced to the

points shown (in green). These points are obtained after

reduction in context of upper-lower as well asleft-right

edges. In both the case, two iterations proved to be enough

for reduction. The iterations for upper-lower edges are i1

and i2 while that for left-right edges are j1 andj2.

It is evident from Figure 21 that a small number of points

are obtained as compared to actual number of points in a

rectangular pocket. RPERA is able to reduce a rectangular

pocket of any size efficiently. The algorithm is more

sophisticated than LCERA as the former deals with lesser

number of points. The chances of error have been reduced

by incorporating various conditions and checks inthe

Figure 23. Part for experimentation and testing.

algorithms. This makes the algorithm well suited for

reduction purposes. Apart from the main reduction

algorithm, we have discussed three algorithms, namely

EPSA, LCERA and RPERA. These are the backbone of

reduction process. Every algorithm does its pre-defined

work based on a set of rule and procedures. These

algorithms together make reduction process a powerful tool

and one of the most complex procedure in the entire

framework.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

 WWW.IJASRET.COM 46

IV RESULTS AND DISCUSSION

To test the validity and performance of the above

algorithms, a genetic algorithm (GA) based optimization of

pocket milling is considered. The workpiece inspired by a

clutch bell (Figure 22) of size 50x50 mm is defined and five

rectangular pocket elements are added as shown in the

Figure 23.

After defining the dimensions and other

parameters, interpolation algorithms were used to model the

test part as shown in Figure 24a. The reduction algorithms

were then implemented to decrease the number of discrete

squares as shown in Figure 24b. It is evident from Figure 24

that, the reduction algorithm significantly decreased the

discrete squares required to model the testpart.

The reduction algorithm is a key component of the

proposed framework. It reduces the number of squares and

hence the search space by considering tool offsets. The

reduction of an element is performed on the basis of tool

size defined by user for that element. A number of

experiments have been conducted test the levels of

reduction and its effects of computational time and

convergence of the solution ofGA.

A large number of squares increase the length of

chromosomes in a GA population. This large-sized

population thus takes a long time to achieve convergence as

slow improvement takes place. Convergence is largely

affected by the length of chromosome, size of population,

and other factors such as crossover and mutation rates. The

results of experiments are shown below in Table 1

Table 1. Experiment results showing number of squares and convergence time.

Sr. No.

Element Size (mm)

No. of squares

(Interpolation)

No. of squares

(Reduction)

Time1

Time2

1.

10 x 10

121

16

>3 hrs.

85 sec

2.

12 x 12

169

25

>5 hrs.

160 sec

3.

20 x 20

441

36

>10 hrs.

7.5 min

4.

20 x 20

441

16

>10 hrs.

85 sec

5.

30 x 30

961

81

>1 day

20 min

6.

30 x 30

961

64

>1 day.

12 min

R

E

F

E

R

E

N

C

Figure 24. (a) Interpolated squares of test part, (b) Reduced squares of test part.

|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

 WWW.IJASRET.COM 47

E

S

It is evident from the table that a large number of

squares are generated by interpolation. Even a small pocket

of 1cm size is defined by 121 squares. So, in this case, the

length of one chromosome would be 121. To process such

as large size chromosomes, calculate their fitness values and

reproducing offspring becomes very difficult and time

consuming. As there are a number of such chromosomes

present in the population, it is no less than a nightmare for

any optimization technique. GA being a probabilistic

approach would keep on testing and recombining

chromosomes in search for at least satisfactory fitness

levels. In fact, search space becomes very large and chances

of finding global optimum or even converging to a solution

arereduced.

The reduction algorithm is shown to have a

positive effect on both the search space size and

convergencetime.Areductionofsearchspaceby85to90

% is observed depending upon the number of elements and

size of tools. For example, in the first experiment, a pocket

having 121 squares is reduced to only 16 squares and

convergence time is reduced from more than 3 hours to only

85 seconds. A drastic reduction in convergence time is thus

observed from the table. Time is reduced by ~ 98% in all

the experiments meaning that convergence is achieved in

very less time after performing reduction. This allows to

optimize toolpaths for parts containing large design

elements in comparatively less time. A task which would

otherwise require hours of computational times even on

high-end CPUs.

V CONCLUSION

In this paper, algorithms for interpolation and

reduction of discrete elements were presented. These

algorithms are utilized in approximation and modeling of

work area in pocket milling. The algorithms are developed

for linear element, circular element and rectangular pocket

element. It was observed that interpolation results in large

number of discrete squares which in turn increases the

search space and hence convergence time of optimization

method. The reduction process allows decreasing of discrete

squares by considering tool offset values. The results

indicate a huge reduction in the search space as well as

convergence time of optimizationmethods.

REFERENCES

1.R. Saravanan, P. Asokan, and M. Sachithanandam,

“Comparative analysis of conventional and non-

conventional optimisation techniques for CNC turning

process,” Int. J. Adv. Manuf. Technol., vol. 17, no. 7, pp.

471–476, 2001.

2.M. Mendes, M. D. Mikhailov, and R. Y. Qassim, “A

mixed-integer linear programming model for part mix, tool

allocation, and process plan selection in

CNC machining centres,” Int. J. Mach. Tools Manuf., vol.

43, no. 11, pp. 1179–1184, 2003.

3. W. Fan, X. S. Gao, C. H. Lee, K. Zhang, and Q. Zhang,

“Time-optimal interpolation for five-axis CNC machining

along parametric tool path based on linear programming,”

Int. J. Adv. Manuf. Technol., vol. 69, no. 5–8, pp. 1373–

1388,2013.

4. Munish Kumar and Pankaj Khatak, “An Investigation of

Conventional and Non-Conventional Optimization

Techniques in CNCMachining”

5.A. I. Sonomez, A. Baykasoglu, T. Dereli, and I. H. Filiz,

“Dynamic optimization of multipass milling operations via

geometric programming,” Int. J. Mach. Tools Manuf., vol.

39, pp. 297–320, 1999.

6.P. H. Wu, Y. W. Li, and C. H. Chu, “Optimized tool path

generation based on dynamic programming for five-axis

flank milling of rule surface,” Int. J. Mach. Tools Manuf.,

vol. 48, no. 11, pp. 1224–1233, 2008.

7.M. Kovacic, M. Brezocnik, I. Pahole, J. Balic, and B.

Kecelj, “Evolutionary programming of CNC machines,” J.

Mater. Process. Technol., vol. 165, pp. 1379–1387, 2005.

8.J. Barclay, V. Dhokia, and A. Nassehi, “Generating

Milling Tool Paths for Prismatic Parts Using Genetic

Programming,” Procedia CIRP, vol. 33, pp. 491–496, 2015.

9.A. Nassehi, W. Essink, and J. Barclay, “Evolutionary

algorithms for generation and optimization of tool paths,”

CIRP Ann. - Manuf. Technol., vol. 64, no. 1, pp. 455–458,

2015.

10.S. Moshat, S. Datta, A. Bandyopadhyay, and P. Pal,

“Optimization of CNC end milling process parameters using

PCA-based Taguchi method,” Int. J. Eng. Sci. Technol., vol.

2, no. 1, pp. 95–102, 2010.

11.I. Asiltürk and S. Neşeli, “Multi response optimisation of

CNC turning parameters via Taguchi method-based

response surface analysis,” Meas. J. Int. Meas. Confed., vol.

45, no. 4, pp. 785–794, 2012.

12.S. L. Omirou, “Space curve interpolation for CNC

machines,” J. Mater. Process. Technol., vol. 141, no. 3, pp.

343–350, 2003.

