

A Research Paper on Comparative study of alternative fuels for sustainable IC engine operation

Prof. G. S Shendre , Pranay R. Palaskar, Harshad S. Talan , Mohit P. Mahajan , Anshul R. Khandare , Vinay J. Manwar , Om p. Ambadkar , amey p. saratkar , Prathamesh S. bodkhe , Rushikesh N. Shelke, prashik P. chickhede, Antriksh L. Pande , Bhushan N. Nakashe

Dr. Rajendra Gode Institute of Technology and Research, Amravati, India

Abstract: The increasing environmental concerns, coupled with the rapid depletion of conventional fossil fuels, have prompted the automotive industry to explore alternative energy sources that can support the continued operation of internal combustion (IC) engines in a more sustainable manner. The need to mitigate greenhouse gas emissions, reduce dependence on finite fossil resources, and meet stringent environmental regulations has led to extensive research and development efforts in identifying viable alternative fuels. These fuels must not only align with the performance requirements of modern IC engines but also minimize their environmental footprint. This paper presents a comprehensive comparative analysis of various alternative fuels, including biodiesel, ethanol, hydrogen, natural gas, and synthetic fuels, each of which offers unique advantages and challenges. The study evaluates these fuels across key parameters, such as fuel availability, energy content, emissions profile, required engine modifications, and overall sustainability. The analysis takes into consideration the economic feasibility and infrastructure requirements for large-scale adoption of each fuel. Further more, the paper highlights the technological advancements and modifications necessary to optimize IC engines for these alternative fuels. This includes the impact of alternative fuels on engine efficiency, power output, fuel economy, and maintenance requirements. Special attention is given to emissions reduction strategies, with a focus on how each fuel contributes to lowering carbon dioxide (CO₂), nitrogen oxides (NO_x), and particulate matter (PM) emissions. In addition to evaluating the current state of alternative fuels, the paper addresses the challenges associated with their adoption, including production scalability, distribution infrastructure, and compatibility with existing vehicle technologies. Finally, the future prospects of integrating these fuels into automotive applications are explored, considering the rapid rise of electric vehicles and other emerging technologies that may further influence the role of IC engines in the transition to sustainable transportation. The findings of this study suggest that while no single alternative fuel is likely to fully replace conventional gasoline and diesel in the near future, a combination of fuels, along with continued innovation in fuel production, engine technology, and policy support, will be necessary to achieve sustainable IC engine operation. The paper concludes by outlining the critical research areas and policy initiatives needed to promote the wider adoption of alternative fuels in the automotive sector.

Keywords: *Alternative fuels, bio fuels, diesel engine, eco-fuels.*

I.INTRODUCTION:

The increasing motorization of the earth has led to a steep rise in the demand of petroleum products. But petroleum resources are Finite Highly concentrated in certain provinces of the world. Source of environmental pollution The transportation sector consumes 65 percent of the total petroleum products supplied in India the transportation sector contributes Around 1/3rd of CO₂ emission Around 1/3rd of NO_x emission Almost 77% of CO emission Around 45% of particulate matter (PM) With this in mind, it is observed that the U.S. Energy Policy Act of 1990 identified eight alternative fuels of note – some that are used, others considered more experimental in kind. Alternative fuels, known as non-conventional and advanced fuels , are any materials or substances that can be used as fuels, other than conventional fuels like; fossil fuels (petroleum (oil), coal, and natural gas), as well as nuclear materials such as uranium and thorium, as well as artificial radioisotope fuels that are made in nuclear reactors. Some well- known alternative fuels include biodiesel, bioalcohol (methanol, E1510, butanol), refuse- derived fuel, chemically stored electricity (batteries and fuel cells), hydrogen, non-fossil methane, non-fossil natural gas, vegetable oil, propane and other biomass sources. To reduce reliance on petroleum-based fuels, Alternate fuels are the best solution for the tomorrow IC engines. "Alternative fuel" means fuel that is a)For use in motor vehicles to deliver direct propulsion, b)Less damaging to the environment than conventional fuels, and

c)Prescribed by regulation, including, without limiting the generality of the foregoing, methanol, propane gas, natural gas, ethanol, hydrogen or electricity when used as a sole source of direct propulsion energy. II.METHANOL AND ETHANOL (ALCOHOL FUELS) Methanol: Methanol is an alcohol fuel. The primary alternative methanol fuel being used is M-85, which is made up of 85 percent methanol and 15 percent gasoline. In the future, neat methanol (M-100), may also be used. Methanol is mainly produced from natural gas. Coal and cellulose consisting biomass like wood etc. may also be used to produce methanol. Methanol (CH₃OH) is an alcohol fuel. Methanol is methane with one hydrogen molecule replaced by a hydroxyl radical (OH). The alternative fuel currently being used is M- *%. In the future, neat methanol or M-100 may also be used. Methanol is also made into ether, MTBE, which is blended with gasoline to enhance octane and to create oxygenated gasoline. Methanol contains no sulphur or complex organic species. Production of Methanol: Methanol is created from a synthesis gas (hydrogen and CO), which is reacted in the presence of a catalyst. Methanol can also be manufactured from non-petroleum feedstocks such as coal and biomass. Methanol can be produced from a variety of feedstock, including natural gas, coal, biomass and cellulose. It is predominantly produced by steam reforming of natural gas to create a synthesis gas, which is then fed into a reactor vessel in the presence of a catalyst to produce methanol and water vapour. In fact today's economics

AND ENGINEERING TRENDS

favour its production from natural gas. Environmental Characteristics: Emissions from M-85 vehicles are somewhat lower than in gasoline powered vehicles. Smog-forming emissions are collectively 30-50 percent lower; NOx and hydrocarbons emissions from M-85 vehicles are similar to slightly lower. However, CO emissions are by and large equal or slightly higher than in gasoline vehicles. Emissions: Methanol perhaps is not the cleanest gasoline alternatives but it has a distinct advantage in controlling ozone formation. USA is centred to methyl alcohol and methanol blends as it promises significant ozone improvements and control smog formation at a reasonable detriment. The following table (Table-1) gives emissions comparison between gasoline, M85 and M100.

Emissions Mg/Km FTP cycle	Gasoline	M85	M100
THC	161.56	111.87	124.30
CO	733.37	683.65	870.11
NOx	460.66	376.12	285.86
Evaporation Emission (mg/test) FTP test	1720.00	680.00	880.00
Benzene	7.76	4.33	0.32
Toluene	33.66	8.66	2.11
Buna-1-3-diene	0.16-0.50	0.44	2.05
Formaldehyde	4.78	13.87	21.76
Acetaldehyde	0.64	10.02	0.27

II. Natural Gas – CNG and LNG

Natural gas is a mixture of hydrocarbons, consisting primarily of methane (CH₄). It is obtained either directly from gas wells or as an associated product during crude oil production. Due to its relatively low energy density in gaseous form, natural gas is compressed to a pressure of 200–250 bar for use as a vehicular fuel. In this form, it is known as Compressed Natural Gas (CNG).

India possesses recoverable natural gas resources exceeding 660 billion cubic meters, making it a viable long-term substitute for conventional petroleum fuels such as petrol and diesel. CNG offers several advantages as an automotive fuel, including:

- Lower engine noise
- Reduced exhaust emissions
- Lower maintenance requirements
- Resistance to fuel adulteration
- Improved driver comfort

Natural gas can be stored onboard vehicles either in a compressed gaseous state (CNG) or in a liquefied state (Liquefied Natural Gas – LNG).

The principal constituent of natural gas is methane, typically accounting for 65–80% by volume. The remaining fraction consists of varying proportions of other hydrocarbons such as ethane, propane, butane, and trace amounts of heavier

hydrocarbons. Non-hydrocarbon components include carbon dioxide (CO₂), nitrogen (N₂), water vapor, hydrogen sulfide (H₂S), and other trace gases. A typical composition of CNG is presented in Table 2.

Before transportation or utilization, natural gas undergoes processing to remove water, hydrogen sulfide, and condensable higher hydrocarbons. This upgrading process prevents condensation and corrosion in pipelines and allows the recovery of valuable by-products. Once considered an unwanted by-product and routinely flared during petroleum extraction, natural gas is now recognized as a valuable and environmentally favorable energy resource.

Table 2: Typical Composition of CNG

(Table to be inserted as per experimental or literature data)

Production

Constituents	% Volume
Methane	93.20
Ethane	04.27
Propane	01.38
i-Butane	00.18
n-Butane	00.20
i-Pentane	00.04
n-pentane	00.03
Carbon dioxide	00.27
Nitrogen	00.43
Moisture content	2.0 ppm

Liquefied Petroleum Gas (LPG) is a by-product of natural gas processing and petroleum refining. During natural gas production, methane is accompanied by other light hydrocarbons. These components are separated in gas processing plants using a combination of increased pressure and reduced temperature, as propane boils at -44°F and ethane at -127°F.

The natural gas liquids (NGLs) recovered during processing include ethane, propane, butane, and heavier hydrocarbons. Additionally, propane and butane are produced as by-products during crude oil refining processes that involve molecular restructuring or cracking to generate more desirable petroleum products.

III.CONCLUSION

Energy dependence is central to modern economic development and lifestyle. However, the limited availability of fossil fuel resources and their adverse environmental impacts necessitate the exploration of alternative and renewable fuels. The combustion of conventional fossil fuels has significantly contributed to air pollution, climate change, and environmental degradation.

Therefore, it is essential to evaluate all available fuels from both economic and environmental perspectives, considering their short-term feasibility and long-term sustainability. The development and adoption of alternative fuels such as alcohol fuels, natural gas, hydrogen, and biofuels represent a crucial step toward achieving energy security and environmental protection in the transportation sector.

AND ENGINEERING TRENDS

IV, REFERENCES

1. Crouse, W. H., & Anglin, D. L. (1985). *Automotive Engines*. Tata McGraw-Hill.
2. Eastop, T. D., & McConkey, A. (1983). *Applied Thermodynamics for Engineering Technologists*. Addison-Wesley.
3. Ferguson, C. R., & Kirkpatrick, A. T. (2001). *Internal Combustion Engines*. John Wiley & Sons.
4. Ganesan, V. (2003). *Internal Combustion Engines*. Tata McGraw-Hill.
5. Gill, P. W., Smith, J. H., & Ziurys, E. J. (1986). *Fundamentals of I.C. Engines*. Oxford & IBH Publishing.
6. Heisler, H. (1996). *Vehicle and Engine Technology*. Arnold Publishers.
7. Heywood, J. B. (1988). *Internal Combustion Engine Fundamentals*. McGraw-Hill.
8. Heywood, J. B., & Sher, E. (1999). *The Two-Stroke Cycle Engine*. Taylor & Francis.
9. Alternative Transport Fuels: An Overview. Parivesh.
10. Kim, D. S., & Lee, C. S. (2006). Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR. *Fuel*, 85, 665–704.
11. Antunes, J. M. G., & Roskilly, A. P. (2004). The use of hydrogen in compression ignition engines. *European Congress on Energy Management*.
12. Janssen, A. (2010). Potential of cellulose-derived biofuels for soot-free diesel combustion. *SAE Paper 2010-01-0335*.
13. Janssen, A. (2010). Impact of biofuel components in diesel blends on engine efficiency and emissions. *SAE Paper 2010-01-2116*.
14. Fanick, E. R. (2014). Novel renewable additive for diesel engines. *SAE Paper 2014-01-1262*.
15. Christensen, E. et al. (2011). Properties and performance of levulinic esters as diesel blend components. *Energy & Fuels*, 25, 5422–5428.
16. Fuel Cells 2000. *Fuel Cell Basics: Benefits*.
17. Science Reference Services (2007). *Batteries, Supercapacitors, and Fuel Cells: Scope*