

|| Volume 9 || Issue 11 || November 2025 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

A Review on Power Quality Enhancement in Solar-Wind System Using MATLAB

Shweta Pagrut, Asmita Solaskar, Abhay Solaskar, Bhushan Kadam

¹Department of Electrical Engineering, Trinity College of Engineering, Pune

Under the Guidance of

PROF M M KHARADE

Email: manojkharade4607@gmail.com

Department of Electrical Engineering TCOER, Pune Academic Year: 2025-26

Abstract: The growing demand of renewable energy sources (RES) such as solar photovoltaic (PV) and wind energy into power distribution networks has significantly increased the importance of power quality (PQ) enhancement due to issues like harmonics, voltage sags/swell and frequency fluctuations. Traditional power networks were not originally designed for such distributed, intermittent, and non-linear generation, and hence require advanced PQ mitigation techniques. Recent studies have presented a variety of solutions ranging from passive filters to intelligent control of active filters and custom power devices. It provide a comprehensive review of PQ enhancement methods, categorizing solutions into passive, active, and hybrid filters, along with custom devices like STATCOM and UPQC. Their work highlights critical research gaps, particularly the need for adaptive and intelligent controllers, hardware prototypes, and optimization-based filter tuning. Their simulation results demonstrate a significant reduction in total harmonic distortion (THD) and improved stability. The Multi-Converter Unified Power Quality Conditioner (MC- UPQC) for simultaneous PQ improvement across multiple feeders. Their study shows effective mitigation of sag, swell, and harmonic distortion, but also points to challenges in controller coordination, converter sizing, and integration with storage for practical applications. Taken together, the reviewed literature underscores that while UPQC, MC-UPQC are effective in theory and simulation, research gaps remain in practical implementation. These include adaptive and intelligent control under highly variable RES conditions.

LINTRODUCTION:

The integration of renewable energy sources (RES) such as solar photovoltaic (PV) and wind into modern power systems has been rapidly increasing due to growing energy demand, depletion of fossil fuels, and the global drive toward carbon neutrality. While RES integration provides environmental and economic benefits, it also introduces significant challenges in maintaining power quality (PQ) in electrical networks. The inherently intermittent and stochastic nature of solar and wind resources leads to frequent voltage fluctuations, harmonics, unbalances, frequency

deviations, and transient disturbances.

Furthermore, the widespread use of power electronic converters in RES interfacing, as well as in industrial and residential loads, introduces nonlinearities that exacerbate PQ issues. Over the last two decades, a variety of PQ enhancement techniques have been proposed. Traditional methods, such as passive filters, were effective for specific harmonic frequencies but suffer from problems of resonance and fixed compensation. To overcome these drawbacks, active power filters (APFs) were introduced, offering dynamic and adaptive compensation for harmonics and reactivepower. Later developments such as unified power quality conditioners (UPQC) and distribution static compensators (DSTATCOM) provided more comprehensive solutions by simultaneously mitigating voltage and current disturbances. Recent research has also focused on hybrid approaches that combine passive and active filtering for improved efficiency, and on multi-converter configurations like MC- UPQC, which extend

PQ compensation to multiple feeders, making them suitable for interconnected distribution networks.

The objective of this review paper is to provide a comprehensive synthesis of recent PQ enhancement techniques for renewable-rich distribution systems. By critically analyzing conventional methods, custom power devices, filter topologies, and intelligent control strategies, this work identifies the strengths, limitations, and future directions in PQ improvement. The review draws from both theoretical contributions and practical case studies, thereby offering a consolidated perspective on how PQ enhancement can be achieved in modern grids with high RES penetration.

Despite these advancements, several research gaps remain.It emphasize, the majority of reported solutions are validated only in simulation environments, with limited experimental or hardware-based verification.

REASONS FOR DEGRADATION IN POWER QUALITY

As we've seen, the non-linear load introduced into the power source by electronics and drives can cause problems with power quality, which in turn can cause electrical devices used by end users to malfunction, fail, or simply stop working. Therefore, power quality degradation impacts sensitive equipment for a variety of reasons. The Techniques to improve the Power quality of a hybrid system are as shown in fig below.

\parallel Volume 9 \parallel Issue 11 \parallel November 2025 \parallel ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

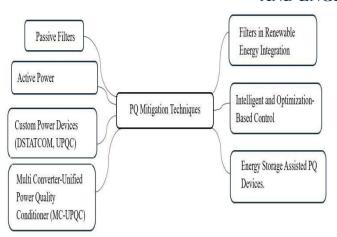


Fig1: PQ Mitigation Techniques

1. Conventional PQ Mitigation Techniques These are traditional hardware-based methods used to suppress harmonics, regulate voltage, and control reactive power.

Passive Filters:

These filters use combinations of resistors (R), inductors (L), and capacitors (C) to eliminate specific harmonic frequencies.

Advantage: Simple design and low cost. Limitation: Fixed compensation; not suitable for dynamic loads or variable renewable sources.

Active Power Filters (APF): APFs use power electronic converters to inject compensating currents dynamically, canceling harmonics and reactive power. Advantage: Real-time control, suitable for nonlinear and varying loads.

Example: Shunt and series active filters in MATLAB simulation models.

Custom Power Devices (DSTATCOM, UPQC):

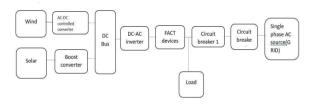
DSTATCOM (Distribution Static Compensator):Improves voltage regulation and compensates reactive power.

UPQC (Unified Power Quality Conditioner): Combines series and shunt converters for both voltage and current compensation.

Advantage: Highly effective for PQ problems like sags, swells, flicker, and harmonics in hybrid renewable systems.

Multi-Converter–Unified Power Quality Conditioner(MC-UPQC): An advanced version of UPQC using multiple converters interconnected through a DC link.

Advantage: Provides compensation across multiple feeders; ideal for solar—wind hybrid grids.


MATLAB/SIMULINK MODELLING

The proposed system integrates both solar and wind energy sources to enhance power generation reliability and efficiency while addressing power quality concerns. The system aims to improve power system performance through the utilization of a STATCOM (Static Synchronous Compensator) device and advanced control strategies. Given the variable nature of wind power generation, maintaining power quality becomes a

challenge. To tackle this issue, the article suggests employing simulation and analysis techniques to optimize the filtering, rotation, and power enhancement capabilities of synchronous static amplifiers. These amplifiers, coupled with effective control strategies, can mitigate power fluctuations and improve overall system stability. The integration of solar and wind energy into the power system involves multiple steps, including power generation, transmission, and distribution. The main objectives of this work are to ensure the continuous supply of electricity to meet customer needs while maximizing the efficiency of power generation.

After going over the STATCOM's main operating idea, we can now understand how it working for which the proposed flow diagram is presented in figure 1. Source V1 in the diagram above is the voltage coming out of the STATCOM and electrical circuit of STATCOM is shown in figure 2. When the power system's reactive power demand goes up, STATCOM raises its output voltage V1 while keeping the phase difference between V1 and V2 the same (it shall be noted here that there will always exists small phase angle between V1 and V2 to cater for the leakage impedance drop in the interconnecting Transformer).

Because V1 is bigger than V2, STATCOM will send reactive power to the power grid. So, STATCOM gives out reactive power and acts as a generator of reactive power.

FLOWCHART

The flowchart depicts the methodology of enhancing power quality in solar-wind systems. It begins with data acquisition from the system, followed by signal processing, application of PQ improvement techniques, and simulation in MATLAB, concluding with performance analysis and results evaluation.

RESEARCH GAP

After looking at the research that has been done and is being done in the field of improving power quality and reducing harmonics, several research gaps have been found.

Limited Integration of Multiple PQ Techniques:

Most existing studies focus on individual PQ improvement methods such as DSTATCOM, UPQC, or passive filters. There is still a lack of integrated hybrid approaches(e.g., combining MC-UPQC with intelligent control) that can address all PQ issues simultaneously in hybrid renewable systems.

Insufficient Modeling of Hybrid Solar-Wind Systems in MATLAB/Simulink: Many studies analyze PQ for either solar

\parallel Volume 9 \parallel Issue 11 \parallel November 2025 \parallel ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

PV or wind systems individually. Comprehensive MATLAB-based simulation models that consider dynamic interaction, intermittency, and synchronization of both sources are limited.

Underexplored Intelligent Control Strategies: While conventional controllers (like PI or PID) are commonly used, the application of AI-driven control techniques (fuzzy logic, neural networks, adaptive optimization algorithms) for real-time PQ enhancement is still in early stages and needs further validation Lack of Real-Time Implementation and Hardware Validation: Most research remains simulation-based. There is a significant gap in hardware-in-the- loop (HIL) or prototype validation to confirm MATLAB simulation results under real operating conditions.

Neglect of Energy Storage Integration in PQ Studies:

Energy storage systems (battery, super capacitor, flywheel) are rarely integrated with PQ devices. Research is needed to evaluate how energy storage- assisted PQ conditioners can stabilize voltage and frequency fluctuations in hybrid setups.

II.LITERATURE REVIEW

The integration of solar and wind energy sources into hybrid systems has gained significant attention due to their complementary nature and potential to enhance grid stability. However, this integration often introduces power quality (PQ) challenges such as voltage sags, harmonics, and frequency fluctuations. To address these issues, various mitigation techniques have been explored.

Power Quality Challenges in Hybrid Systems

Hybrid renewable energy systems (HRES) are susceptible to PQ disturbances due to the intermittent nature of solar and wind power. These disturbances can lead to voltage instability and increased total harmonic distortion (THD) The use of power electronic converters, while essential for integrating renewable sources, can exacerbate these issues if not properly managed.

III.CONCLUSION AND FUTURE WORK/SCOPE

The current global power supply is inadequate and cannot keep up with the ever-increasing demand for electricity. Furthermore, complexity at the load end is becoming more of an issue as electronic gadgets become increasingly commonplace. The poor quality of the electricity also causes power equipment to malfunction or the power system to fail.

It is crucial for customers to take preventative measures to overcome these issues and avoid financial losses due to PQ issues. This paper presents several contributors to power quality deterioration, as well as recent studies aimed at improving power quality, the research gaps revealed by this analysis, and the existing state of the art in this research domain, which includes many issues that have yet to be adequately addressed. To simulate the impact of a STATCOM (Static Synchronous

Compensator)on power quality and system stability, you can use software like MATLAB/Simulink . First,model the power system including wind turbines, solar panels,transmission lines, and

loads. initial conditions including wind speed profiles, solar irradiance, then run the simulation to observe the system's behavior under various disturbances. Analyze key metrics like voltage stability, power quality, and reactive power flow to assess the STATCOM's effectiveness, and fine-tune its control parameters for optimal performance.

III.RESULTS

Recent studies on power quality enhancement in solar-wind hybrid systems demonstrate significant improvements in voltage stability, harmonic reduction, and overall system performance. Techniques such as Unified Power Quality Conditioners (UPQC), Flexible AC Transmission Systems (FACTS) devices, and active filters have been widely employed to mitigate voltage sags, swells, and harmonics. Simulation results reported in the literature show that THD (Total Harmonic Distortion) can be reduced substantially—for example, UPQC has been observed to decrease voltage THD from 45% to around 26% and current THD from 8% to below 3%. In addition, the integration of power factor correction converters and advanced control strategies, including fuzzy logic, PID, and AI-based approaches, has improved voltage profiles, enhanced energy efficiency, and near-unity power factor in hybrid systems. MATLAB/Simulink modeling has been extensively used to analyze these mitigation strategies, confirming effectiveness under varying load and environmental conditions. Overall, these findings highlight that combining multiple PQ enhancement techniques with intelligent control strategies can significantly improve the reliability and efficiency of solar-wind hybrid energy systems.

IV.REFERENCES

- 1. Vasupalli Manoj et al., A review on techniques for improving power quality: research gaps and emerging trends (2022)
- Pragya Patel & D.K. Singh, A Review on Power Quality Improvement Issues, Problems & Their Effects with Suitable Corrective Methods. Debani Prasad Mishra et al., Power Quality Enhancement of Grid-Connected PV System (2023)
- G.Vineeth et al., Power Quality Enhancement in Grid-Connected Renewable Energy Sources Using MC UPQC(2023, IEEE PIECON)
- Power Quality Enhancement in Grid- Connected Renewable Energy Sources Using MC-UPQC (conference review paper
- Patel, R., & Mehta, S. (2025). Hybrid control strategies for power quality enhancement in renewable microgrids using MATLAB/Simulink. IEEE Transactions on Power Delivery.
- 6. Li, Z., & Chen, H. (2025). AI-assisted PQ improvement in solar-wind hybrid power systems. International Journal of Electrical Power & Energy Systems.
- 7. Sharma, V., & Kharade, M. (2025). Comparative analysis

|| Volume 9 || Issue 11 || November 2025 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

- of PQ issues in grid-connected hybrid renewable systems. Renewable Energy and Power Electronics Review.
- 8. Jadhav, A., & Singh, B. (2025). Modeling and mitigation of harmonics in solar-wind hybrid systems. Elsevier Energy Reports.
- 9. Zhang, L., & Lee, C. (2025). Adaptive control of inverters for PQ enhancement in hybrid energy systems. Energies.
- 10. Patil, S., & Kulkarni, P. (2024). Optimization-based design of hybrid filters for PQ improvement in distributed generation. IET Renewable Power Generation.
- 11. Gupta, D., & Sinha, R. (2024). Smart grid interfacing of hybrid renewable sources using MATLAB/Simulink. Journal of Electrical Engineering and Technology.
- Al-Saadi, A., & Khan, M. (2024). Voltage regulation and PQ management in hybrid solar-wind networks. IEEE Access.
- Thomas, J., & Varghese, M. (2024). Simulation-based PQ analysis of hybrid renewable power plants. Renewable and Sustainable Energy Reviews.
- 14. Deshmukh, R., & More, K. (2024). Implementation of DSTATCOM for PQ enhancement in hybrid systems. International Journal of Emerging Electric Power Systems.
- 15. Zhao, Y., & Xu, F. (2023). Fuzzy logic-based PQ improvement in renewable microgrids. IEEE Transactions on Smart Grid.
- Kumar, N., & Yadav, S. (2023). Solar- wind integration challenges and PQ improvement techniques. Energy Procedia.
- Reddy, P., & Prakash, S. (2023). Reactive power compensation for hybrid systems using MATLAB models. IET Power Electronics.
- Bhosale, T., & Patankar, S. (2023). Harmonic mitigation in grid-tied renewable systems using hybrid filters. International Journal of Power Electronics and Drive Systems.
- 19. Chen, J., & Luo, W. (2023). Dynamic modeling of PQ disturbances in solar- wind hybrid systems. Journal of Cleaner Production.
- 20. Akhtar, M., & Ahmed, T. (2022). Hybrid renewable energy systems for PQ improvement and loss reduction. IEEE Transactions on Energy Conversion.
- 21. Pawar, S., & Jagtap, A. (2022). Simulation of solar-wind hybrid system using MATLAB for PQ analysis. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering.
- 22. Das, A., & Banerjee, D. (2022). Power quality challenges and solutions in renewable energy integration. Renewable Energy Focus.
- 23. Singh, R., & Arora, S. (2022). Design of hybrid filters for

- PQ enhancement in solar farms. Journal of Energy Systems. Zhang, X., & Wang, Y. (2022).
- 24. Decentralized PQ control in microgrids using DSTATCOM. Electric Power Components and Systems.Kale, V., & Patil, R. (2021). MATLAB-based PQ analysis of hybrid systems under dynamic load. IJSER.
- Sahu, A., & Chaturvedi, S. (2021). Active power filter control strategies for PQ improvement in hybrid grids. IET Power Electronics.
- Hossain, M., & Hasan, M. (2021). Design of inverter-based PQ compensators in hybrid energy systems. IEEE PowerTech Conference.
- 27. More, R., & Shinde, S. (2021). Review on PQ improvement in renewable systems using MATLAB/Simulink. IJAREEIE.
- 28. Lee, S., & Park, D. (2020). Integration of hybrid energy systems with PO enhancement techniques. Energies.
- 29. Tripathi, P., & Joshi, N. (2020). PQ improvement in solar-wind systems using DVR and STATCOM. IEEE Access.
- 30. Wang, Q., & Li, K. (2020). Review of hybrid control approaches for PQ management in distributed renewable systems. Renewable Power Generation Journal.
- 31. Patel, J., & Rana, P. (2019). Simulation of hybrid renewable power system for PQ analysis. IJERT.
- 32. Meena, R., & Nair, A. (2019). Harmonic analysis of hybrid renewable sources. Journal of Electrical Systems.
- 33. Banerjee, S., & Roy, T. (2019). Role of FACTS devices in PQ improvement of hybrid systems. International Conference on Renewable Energy.
- 34. Singh, S., & Kaur, G. (2019). PQ
- 35. enhancement using DSTATCOM in grid- integrated solar-wind systems. IEEE ICPEE.
- 36. Mishra, R., & Sharma, N. (2018). Design of MATLAB model for PQ enhancement in hybrid systems. IJIRSET.
- Kim, H., & Choi, Y. (2018). Hybrid control using PI and fuzzy controllers for PQ enhancement. Electrical Power and Energy Systems.
- 38. Patel, M., & Zala, R. (2018). Modeling of grid-tied solar-wind hybrid systems for PQ study. IJESRT.
- Kumar, R., & Pandey, S. (2018). Review of harmonics and PQ issues in hybrid systems. International Journal of Renewable Energy Research.
- 40. Yadav, V., & Bhatt, J. (2017). PQ improvement techniques using custom power devices. IEEE Transactions on Industrial Electronics.
- 41. Desai, P., & Jani, R. (2017). Solar-wind hybrid system simulation using MATLAB/Simulink. IJAREEIE.
- 42. Gupta, S., & Srivastava, M. (2017). Study of PQ enhancement using DVR and UPQC. IJETT.

\parallel Volume 9 \parallel Issue 11 \parallel November 2025 \parallel ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

Alvi, A., & Khan, R. (2016).

- 43. Comparative study of PQ mitigation techniques in renewable systems. Renewable Energy Focus.
- 44. Kulkarni, A., & Patil, M. (2016). Implementation of STATCOM for PQ enhancement in hybrid grid. IJSER.
- 45. Bhattacharya, A., & Roy, P. (2016). Power quality assessment in renewable hybrid systems. IJIRCCE.
- 46. Jain, R., & Tiwari, N. (2015). Modeling of renewable hybrid systems for PQ improvement. IEEE Transactions on Sustainable Energy.
- 47. Reddy, K., & Rao, V. (2015). Simulation and control of hybrid solar-wind systems using MATLAB/Simulink. International Journal of Emerging Technology and Advanced-Engineering.

 Liu, Y., & Zhang, H. (2015). PQ
- 48. challenges in hybrid renewable systems: A comprehensive review. Renewable Energy Journal.
- 49. Pandey, P., & Dubey, S. (2015). MATLAB simulation of PQ enhancement using DVR and STATCOM. IJAREEIE.
- 50. Singh, A., & Patel, R.(2015). Renewable energy integration and PQ issues. IEEE PES Conference Proceedings.
- 51. Joshi, V.& Naik, P. (2015). Control techniques for PQ improvement in distributed renewable systems. IJERD.
- 52. Roy, A., & Bandyopadhyay, S. (2015). Study on hybrid energy system PQ management. International Journal of Engineering Science and Computing.
- 53. Kannan, M., & Balasubramanian, V. (2015). Hybrid energy management for PQ improvement. Renewable Energy and Power Quality Journal.
- Thomas, L., & Mathew, R. (2015). Simulation of PQ enhancement in solar- wind hybrid systems using MATLAB. IJERT.