
|| Volume 9 || Issue 11|| November 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 5

Large Language Models as Programming Tutors in Computer Science
Education: A Systematic Review of Applications, Learning Effectiveness,

Error Patterns, and Academic Integrity
Smt.Gosavi Shweta Vishnu

Assistant Professor, (HOD) BCA Department, NDMVP Samaj's S.V.K.T.College of Arts,Science and Commerce, Deolali Camp, Nashik ,
Maharashtra- 422401

--***---
Abstract:This review synthesizes empirical evidence on how large language models (LLMs) are used as programming tutors across five
key applications: code explanation, debugging, formative feedback, exercise/test generation, and assessment. Following PRISMA 2020
guidance, studies from 2020–2025 were screened for relevance to programming education, with outcomes on learning effectiveness, error
patterns, and academic integrity synthesized via narrative and thematic methods. The mapping of recent studies indicates rapid uptake of
LLMs, mixed but promising learning outcomes, recurring failure modes in logic and specification adherence, and emerging academic
integrity risks alongside mitigation practices. Implications are provided for course design in Object-Oriented Programming (OOP)
contexts, assessment practices, and departmental policy, with identified gaps and recommendations for standardized evaluation.

Keywords: Large language models; programming education; formative feedback; exercise/test generation; assessment; academic
integrity; object-oriented programming; Java; C++.

--***---

I.INTRODUCTION:
The rapid emergence of Large Language Models (LLMs), such
as ChatGPT and GitHub Copilot, is fundamentally transforming
the landscape of computer science (CS) education (Prather et al.,
2023; Fernandez & Cornell, 2024; Lyu et al., 2024). While these
tools offer promising opportunities to function as programming
tutors including the provision of personalized code explanation
and debugging assistance their use presents significant
pedagogical and ethical challenges (Becker et al., 2023; Cambaz
& Zhang, 2024; Lau & Guo, 2023). The core challenge lies in
determining how to ethically and effectively integrate generative
AI when its capability to generate correct solutions threatens
traditional assessment validity, particularly for take-home coding
tasks and auto-gradable CS1 exercises (Lyu et al., 2024; Prather
et al., 2023; Becker et al., 2023).Computing instructors urgently
need clear guidance to navigate the shifting demands of the
Generative AI era (Cambaz & Zhang, 2024; Prather et al., 2023).

This guidance must first focus on helping educators "clearly
delineate what qualifies as acceptable use of AI and what is
deemed as plagiarism" (Azoulay et al., 2025) by revising
academic integrity policies (Lau & Guo, 2023; Cambaz & Zhang,
2024).Actionable frameworks are required to shift pedagogical
emphasis towards higher-order skills, suggesting "a shift in
emphasis towards code reading and evaluating rather than code
generation" (Becker et al., 2023) and integrating "Generative AI
literacy" into the curriculum (Lyu et al., 2024; Fernandez &
Cornell, 2024).Educators need support in teaching students how
to formulate prompts properly and critically evaluate the often-
inconsistent responses LLMs produce (Fernandez & Cornell,
2024; Lyu et al., 2024).Without "specific actionable guidelines
for educators to ensure safe student interaction" (Cambaz &
Zhang, 2024), the computing education community risks being
unprepared for this technological change. This review addresses

this need by consolidating findings to answer five research
questions (RQs) concerning LLM applications, learning
effectiveness, error patterns, academic integrity, and contextual
moderators.

Background

The ascent of LLMs is extending educational NLP capabilities to
complex code generation and reasoning tasks (Raihan et al.,
2025; Prather et al., 2023). Systematic reviews confirm that
LLMs are being rapidly integrated as programming tutors,
predominantly in university-level introductory courses (Haruto et
al., 2025; Raihan et al., 2025). The models exhibit impressive
performance; for example, GPT-3.5 and GPT-4 achieved a high
success rate, solving 94.4% to 95.8% of introductory Python
programming challenges from the CodingBat benchmark
(Kiesler & Schiffner, 2023).This high performance on functional
tasks belies the fact that the tools are consistently characterized
by intrinsic reliability issues that impede their function as
comprehensive assistants (Pirzado et al., 2024).

This review will present a detailed taxonomy of these issues,
including logic errors, specification drift, hallucinations, and
overconfidence (Hellas et al., 2023; MacNeil et al., 2024; Kiesler
& Schiffner, 2023). When acting as programming tutors, LLM-
generated explanations are often rated as "significantly easier to
understand and more accurate summaries of code than student-
created explanations" (Leinonen et al., 2023, p. 128). Yet, this
benefit is tempered by error profiles; for instance, LLMs often
provide overconfident wrong answers, which novices struggle to
verify (Kiesler & Schiffner, 2023; Lyu et al.,
2024).Comprehensive surveys cite risks such as student
overreliance and subsequent skill atrophy as major challenges
(Haruto et al., 2025; Lyu et al., 2024).

|| Volume 9 || Issue 11|| November 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 6

II.METHODS

Protocol

The reporting methodology adheres to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 statement, including use of the PRISMA 2020 checklist and
flow diagram to transparently describe identification, screening,
eligibility, and inclusion. The study selection flow is depicted in
Figure 1 (PRISMA 2020), which summarizes all counts across
stages for this review and underpins the final inclusion of 76
studies .Complete search strategies and screening procedures are
documented consistent with established guidance, and the figure
is cross- referenced in Results Section 4.1 to align with PRISMA
item 16a.

Figure 1 PRISMA flow image

Sources and Timeframe

Information sources comprised three core bibliographic
databases covering computer science and education research:
ACM Digital Library, Scopus, and IEEE Xplore. The time
window for eligible records was 2020–2025 to capture the
post- LLM era in programming education, matching prior
reviews while focusing on the period of rapid classroom uptake.
Per PRISMA 2020, full search strings and the last- searched
dates for each database are provided in the review materials to
ensure reproducibility and auditability.

Inclusion and Exclusion Criteria

Studies were included if they reported empirical or
design- evaluation evidence in programming education with
outcomes in at least one of five categories: explanation,
debugging, formative feedback, exercise/test generation, or
assessment, situated in higher education or late K- 12 and
published in English. Studies were excluded if they were pure
systems papers without educational evaluation, opinion pieces
without empirical data, or duplicate records, consistent with
pre- specified eligibility criteria aligned to PRISMA 2020 Item 5.

Screening and Extraction

Screening proceeded in two stages title/abstract followed by
full- text assessment conducted by multiple independent
reviewers with conflicts resolved by consensus, in line with
PRISMA 2020 reporting expectations for selection processes. A
structured extraction schema captured study context, application
category, model, outcomes, error patterns, and
academic- integrity considerations to support narrative and
thematic synthesis.

Synthesis Approach

Synthesis employed narrative and thematic integration with
structured vote counting by outcome direction, reflecting
heterogeneity that precluded meta- analysis.Pre- specified
subgroup analyses compared outcomes by OOP focus,
programming language, course level, model version, and
prompting strategy, with the full selection flow summarized in
Figure 1 for PRISMA completeness.

III.RESULTS

.Study Selection (PRISMA Flow)

The study selection process followed PRISMA 2020 guidelines
(Haruto et al., 2025). Initial identification of records across
multiple reviews ranged from 154 to over 6,000 (Pereira &
Mello, 2025; Pirzado et al., 2024). After removing duplicates,
title and abstract screening further narrowed the corpus (Raihan
et al., 2025; Cambaz & Zhang, 2024). Following a full-text
assessment, a final set of studies was included for synthesis,
ranging from 21 to 125 studies across the reviews (Cambaz &
Zhang, 2024; Raihan et al., 2025).

RQ1: Applications of LLMs as Programming Tutors

LLMs are reshaping programming instruction across five key
application categories. For students, the primary uses are
explanation and real-time debugging (Haruto et al., 2025; Lyu et
al., 2024). LLM-generated explanations are often rated as
"significantly easier to understand and more accurate" than
student-created ones (Leinonen et al., 2023, p. 128). As
debugging assistants, tools like CodeTutor are heavily used for
syntax comprehension and error correction (Lyu et al., 2024).

For instructors, LLMs are used to automate formative feedback
and assessment (Azaiz et al., 2024; Cambaz & Zhang, 2024).
Models can produce personalized feedback, though with mixed
accuracy.One study of GPT-4 Turbo found only 52% of
feedback was fully correct (Azaiz et al., 2024, p. 30). For
assessment, high success rates on introductory tasks have led to
pedagogical shifts like "Prompt Problems," where the task is to
write the prompt itself (Denny et al., 2024). Instructors use
LLMs for exercise/test generation to create varied assignments
(Sarsa et al., 2022).

RQ2: Learning Effectiveness and Student Outcomes

Evidence on learning effectiveness is mixed. A semester-long
study found that students using an LLM tutor (CodeTutor)
showed significant improvements in final scores compared to a

|| Volume 9 || Issue 11|| November 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 7

control group (Lyu et al., 2024). Another study in an OOP course
that redesigned assignments to be more complex found no
statistically significant difference in grades between groups with
and without LLM access, suggesting that pedagogical
interventions can mitigate certain impacts (Kosar et al., 2024, as
cited in Azoulay et al., 2025, p. 24).

Effectiveness is strongly moderated by course level and task type.
In introductory courses, LLMs excel at self-contained problems
(Kiesler & Schiffner, 2023), novices themselves struggle to write
effective prompts (Nguyen et al., 2024). In advanced courses,
performance declines sharply,ChatGPT’s correctness rate
dropped from 75.66% in introductory data science to just 22.9%
in advanced courses (Shen et al., 2024, p. 140).

RQ3: Recurring Error Patterns and Failure Modes

The utility of LLMs as programming tutors is undermined by
recurring error patterns (Pirzado et al., 2024). A primary model
limitation is the generation of logic errors (MacNeil et al., 2024).
This is particularly acute in OOP contexts, where LLMs violate
best practices, such as using instanceof for type checking
(Pereira Cipriano & Alves, 2023, p. 119). Another critical error
is hallucination.One study found that in 48% of responses to
student help requests, the LLM "reported on issues that did not
actually exist" (Hellas et al., 2023, p. 115).

Interaction failures are also common. Specification drift occurs
when novices write unclear prompts (Nguyen et al., 2024).
LLMs exhibit an over-completion bias, providing a full solution
even when explicitly asked for a hint (Hellas et al., 2023, p. 96).
Mitigation strategies center on prompt engineering and teaching
critical evaluation of AI output (Shen et al., 2024; Fernandez &

RQ4: Academic Integrity and Assessment Practices

The ability of LLMs to solve introductory assignments poses a
fundamental threat to academic integrity (Lau & Guo, 2023; Lyu
et al., 2024). Current detection methods are largely
ineffective.Traditional plagiarism software is easily
circumvented (Lau & Guo, 2023, p. 6) and specialized AI
detectors are unreliable (Azoulay et al., 2025).

Educators are pursuing assessment redesign (Lau & Guo, 2023).
Key patterns include:

 Authentic Tasks: Using bespoke starter code or local
context that LLMs lack (Lau & Guo, 2023, p. 5).

 Process-Based Assessment: Grading development
history and design logs rather than just the final product
(Lau & Guo, 2023, p. 7).

 Oral Defenses: Requiring students to verbally explain
their code to verify understanding, a strategy shown to
be effective (Azoulay et al., 2025, p. 41; Kosar et al.,
2024, as cited in Azoulay et al., 2025).

RQ5: Contextual Moderators Influencing Outcomes

LLM performance is influenced by several moderators. Model
version is critical.Newer models like GPT-4 consistently

outperform earlier versions in accuracy and consistency (Azaiz et
al., 2024; MacNeil et al., 2024). Prompt scaffolding is equally
important, as performance improves with detailed prompts (Shen
et al., 2024), but novices "struggle to write natural language
prompts for LLMs" (Nguyen et al., 2024, p. 10). Instructor
oversight is essential, as the pedagogical value depends on
"thoughtful integration strategies that combine automation with
human oversight" (Haruto et al., 2025, p. 305) , performance
weakens with non-English languages (Pirzado et al., 2024) and
non-textual inputs (Ooh et al., 2025, as cited in Savelka et al.,
2024).

IV.DISCUSSION

The findings indicate that while LLMs provide scalable support
as programming tutors, their integration into OOP contexts
requires careful scaffolding to translate this support into durable
learning gains (Haruto et al., 2025; Prather et al., 2023). LLMs’
strong performance on CS1-style Python problems coexists with
brittleness on multi-class OOP tasks, where adherence to
encapsulation and design constraints remains inconsistent
(Kiesler & Schiffner, 2023; Pereira Cipriano & Alves, 2023).
This performance duality is a central challenge.

To counter the observed patterns of logic errors and specification
drift, the most critical adaptations are the enforcement of
rigorous design principles: scaffolding, prompt literacy, and
verification workflows (Liffiton et al., 2023; Shen & Ai, 2024;
Lau & Guo, 2023). Scaffolding requires integrating LLMs into
tools with "guardrails" to prevent them from outputting complete
solutions (Liffiton et al., 2023). Prompt literacy must be
explicitly taught, helping students decompose complex OOP
tasks into structured steps (Shen & Ai, 2024) Instructors must
enforce verification workflows, redesigning assignments to focus
on code reading and critique, thereby reinforcing the cognitive
skills necessary to audit AI output (Lau & Guo, 2023; Fernandez
& Cornell, 2024).

Quality Appraisal and Limitations

The research landscape concerning LLMs in CS education is
marked by significant methodological and contextual
heterogeneity (Raihan et al., 2025). While systematic reviews
categorize most studies as having "High" or "Moderate" rigor
(Pereira & Mello, 2025). The diversity in designs makes direct
comparison difficult (Haruto et al., 2025). The research is also
heavily skewed toward introductory university courses in the
Global North, raising concerns about generalizability (Haruto et
al., 2025, p. 336).

Several common threats to validity are present. The rapid
evolution of LLMs poses a major threat to temporal validity
(Azaiz et al., 2024, p. 33). The inherent stochasticity of LLMs
challenges reproducibility (Azaiz et al., 2024, p. 33; MacNeil et
al., 2024, p. 188). Many qualitative studies also face threats from
rater bias (Hellas et al., 2023, p. 96). These factors combined
with a lack of standardized metrics, make a statistical meta-
analysis largely infeasible (Gaitantzi & Kazanidis, 2025).

|| Volume 9 || Issue 11|| November 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 8

Implications and Recommendations

For Instructors:

 Teach Prompt Scaffolding and Literacy: Incorporate
dedicated activities to teach students how to formulate
effective prompts by breaking down problems and
providing context (Lyu et al., 2024; Fernandez &
Cornell, 2024).

 Establish Verification Workflows: Design
assignments that require students to critically evaluate
LLM-generated output for errors or poor design (e.g.,
requiring students to submit a report analyzing an
LLM's solution for adherence to SOLID principles)
(Cambaz & Zhang, 2024; Fernandez & Cornell, 2024).

 Implement Timed Formative Feedback: Use LLMs
to provide immediate feedback, but integrate them
within tools that have "guardrails" to prevent the
generation of complete solutions (Azaiz et al., 2024;
Liffiton et al., 2023).

For Assessment Leads:

 Design Authentic, AI-Proof Tasks: Revamp
traditional assignments by incorporating local context or
multi-modal inputs (e.g., UML diagrams) that challenge
the LLM’s general training data (Lau & Guo, 2023;
Azoulay et al., 2025).

 Emphasize Process Logs and Documentation: Shift
grading focus toward process-based assessment,
requiring students to submit iterative documentation
like version control history (Lau & Guo, 2023).

 Incorporate Oral Defenses and Presentations:
Mandate oral examinations where students must
verbally explain their code logic to ensure genuine
comprehension (Azoulay et al., 2025; Lau & Guo,
2023).

 Calibrate and Articulate Policies: Develop clear,
subject-specific academic integrity policies that define
permitted and prohibited uses of LLMs (Lau & Guo,
2023; Azoulay et al., 2025).

For Departments:

 Mandate Generative AI Literacy Training: Integrate
AI literacy as a core component of the CS curriculum
for both students and faculty (Lyu et al., 2024; Haruto et
al., 2025).

 Promote Hybrid LLM-Human Systems: Invest in
developing localized LLM tools that combine the
scalability of AI with essential human oversight
(Pirzado et al., 2024; Haruto et al., 2025).

 Advocate for Watermarking Technology: Collaborate
with LLM developers to mandate the use of invisible
watermarks or digital fingerprints in AI-generated code
for future traceability (Azoulay et al., 2025).

For Researchers:

 Develop Standardized Reporting Templates: Adopt
common templates that explicitly detail the model
version, parameters, and date of data collection to
ensure reproducibility (Azaiz et al., 2024; Pereira
Cipriano & Alves, 2023).

 Create Shared and Diverse Benchmarks: Develop
public benchmark datasets that test LLM capabilities on
advanced topics like OOP best practices and complex
algorithmic reasoning (Shen et al., 2024; Pereira
Cipriano & Alves, 2023).

 Focus on Long-Term Impact: Prioritize longitudinal
studies that assess the long-term effects of LLM usage
on critical thinking and problem-solving skills (Haruto
et al., 2025; Lyu et al., 2024).

V.CONCLUSION

Across code explanation, debugging, formative feedback,
exercise/test generation, and assessment, LLMs demonstrate
substantial potential as programming tutors but require deliberate
pedagogy and integrity safeguards to realize consistent learning
benefits. While newer models show improved accuracy,
effectiveness is undermined by persistent error patterns
particularly when moving beyond simple syntactic tasks to
complex design paradigms like OOP. LLMs may pass functional
tests but often fail to adhere to fundamental OOP best practices.
This gap fuels academic integrity risks, as students may become
over-reliant on tools that provide functional but pedagogically
poor solutions.Instructors must shift toward integrity-aware
assessment in OOP-focused courses by designing complex
assignments and integrating process-based evaluation. For the
research community, standardized evaluation practices and
shared benchmarks are pivotal for responsible and effective
integration.

VI.REFERENCES

1. Azaiz, I., Kiesler, N., & Strickroth, S. (2024).
Feedback-Generation for Programming Exercises With
GPT-4. Proceedings of the 2024 on Innovation and
Technology in Computer Science Education V. 1, 31–37.
https://doi.org/10.1145/3649217.3653594

2. Azoulay, R., Hirst, T., & Reches, S. (2025). Large
Language Models in Computer Science Classrooms:
Ethical Challenges and Strategic Solutions. Applied
Sciences, 15(4), 1793.
https://doi.org/10.3390/app15041793

3. Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-
Reilly, A., Prather, J., & Santos, E. A. (2023).
Programming Is Hard - Or at Least It Used to Be:
Educational Opportunities and Challenges of AI Code
Generation. Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, 500–
506. https://doi.org/10.1145/3545945.3569759

https://doi.org/10.1145/3649217.3653594
https://doi.org/10.3390/app15041793
https://doi.org/10.1145/3545945.3569759

|| Volume 9 || Issue 11|| November 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 9

4. Cambaz, D., & Zhang, X. (2024). Use of AI-driven
Code Generation Models in Teaching and Learning
Programming: A Systematic Literature Review.
Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1, 172–178.
https://doi.org/10.1145/3626252.3630958

5. Cipriano, B. P., & Alves, P. (2023). GPT-3 vs Object
Oriented Programming Assignments: An Experience
Report. Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science
Education V. 1, 61–67.
https://doi.org/10.1145/3587102.3588814

6. Denny, P., Leinonen, J., Prather, J., Luxton-Reilly, A.,
Amarouche, T., Becker, B. A., & Reeves, B. N. (2024).
Prompt Problems: A New Programming Exercise for
the Generative AI Era. Proceedings of the 55th ACM
Technical Symposium on Computer Science Education
V. 1, 296–302.
https://doi.org/10.1145/3626252.3630909

7. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., & Zhou, M.
(2020). CodeBERT: A Pre-Trained Model for
Programming and Natural Languages. Findings of the
Association for Computational Linguistics: EMNLP
2020, 1536–1547.
https://doi.org/10.18653/v1/2020.findings-emnlp.139

8. Fernandez, A. S., & Cornell, K. A. (2024). CS1 with a
Side of AI: Teaching Software Verification for Secure
Code in the Era of Generative AI. Proceedings of the
55th ACM Technical Symposium on Computer Science
Education V. 1, 345–351.
https://doi.org/10.1145/3626252.3630817

9. Gaitantzi, A., & Kazanidis, I. (2025). The Role of
Artificial Intelligence in Computer Science Education:
A Systematic Review with a Focus on Database
Instruction. Applied Sciences, 15(7), 3960.
https://doi.org/10.3390/app15073960

10. Haindl, P., & Weinberger, G. (2024). Students’
Experiences of Using ChatGPT in an Undergraduate
Programming Course. IEEE Access, 12, 43519–43529.
https://doi.org/10.1109/ACCESS.2024.3380909

11. Haruto, S., Nnadi, L. C., & Yutaka, W. (2025a).
Systematic Review of Large Language Model
Applications in Programming Education. In H. Fujita, A.
Hernandez-Matamoros, & Y. Watanobe (Eds.),
Frontiers in Artificial Intelligence and Applications.
IOS Press. https://doi.org/10.3233/FAIA250512

12. Haruto, S., Nnadi, L. C., & Yutaka, W. (2025b).
Systematic Review of Large Language Model
Applications in Programming Education. In H. Fujita, A.
Hernandez-Matamoros, & Y. Watanobe (Eds.),
Frontiers in Artificial Intelligence and Applications.

IOS Press. https://doi.org/10.3233/FAIA250512

13. Hellas, A., Leinonen, J., Sarsa, S., Koutcheme, C.,
Kujanpää, L., & Sorva, J. (2023). Exploring the
Responses of Large Language Models to Beginner
Programmers’ Help Requests. Proceedings of the 2023
ACM Conference on International Computing
Education Research V.1, 93–105.
https://doi.org/10.1145/3568813.3600139

14. Jacobs, S., & Jaschke, S. (2024). Evaluating the
Application of Large Language Models to Generate
Feedback in Programming Education. 2024 IEEE
Global Engineering Education Conference (EDUCON),
1–5.
https://doi.org/10.1109/EDUCON60312.2024.10578838

15. Joshi, I., Budhiraja, R., Dev, H., Kadia, J., Ataullah, M.
O., Mitra, S., Akolekar, H. D., & Kumar, D. (2024).
ChatGPT in the Classroom: An Analysis of Its
Strengths and Weaknesses for Solving Undergraduate
Computer Science Questions. Proceedings of the 55th
ACM Technical Symposium on Computer Science
Education V. 1, 625–631.
https://doi.org/10.1145/3626252.3630803

16. Kiesler, N., & Schiffner, D. (2023). Large Language
Models in Introductory Programming Education:
ChatGPT’s Performance and Implications for
Assessments (No. arXiv:2308.08572). arXiv.
https://doi.org/10.48550/arXiv.2308.08572

17. Koutcheme, C., Dainese, N., Sarsa, S., Hellas, A.,
Leinonen, J., Ashraf, S., & Denny, P. (2025).
Evaluating Language Models for Generating and
Judging Programming Feedback. Proceedings of the
56th ACM Technical Symposium on Computer Science
Education V. 1, 624–630.
https://doi.org/10.1145/3641554.3701791

18. Kulangara, K. J. (n.d.). Designing and Building a
Platform for Teaching Introductory Programming
Supported by Large Language Models.

19. Kumar, N. A., & Lan, A. (2024). Using Large
Language Models for Student-Code Guided Test Case
Generation in Computer Science Education (No.
arXiv:2402.07081). arXiv.
https://doi.org/10.48550/arXiv.2402.07081

20. Lau, S., & Guo, P. (2023). From “Ban It Till We
Understand It” to “Resistance is Futile”: How
University Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and
Explanation Tools such as ChatGPT and GitHub
Copilot. Proceedings of the 2023 ACM Conference on
International Computing Education Research V.1, 106–
121. https://doi.org/10.1145/3568813.3600138

21. Leinonen, J., Denny, P., MacNeil, S., Sarsa, S.,
Bernstein, S., Kim, J., Tran, A., & Hellas, A. (2023).

https://doi.org/10.1145/3626252.3630958
https://doi.org/10.1145/3587102.3588814
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3626252.3630817
https://doi.org/10.3390/app15073960
https://doi.org/10.1109/ACCESS.2024.3380909
https://doi.org/10.3233/FAIA250512
https://doi.org/10.3233/FAIA250512
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1109/EDUCON60312.2024.10578838
https://doi.org/10.1145/3626252.3630803
https://doi.org/10.48550/arXiv.2308.08572
https://doi.org/10.1145/3641554.3701791
https://doi.org/10.48550/arXiv.2402.07081
https://doi.org/10.1145/3568813.3600138

|| Volume 9 || Issue 11|| November 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 10

Comparing Code Explanations Created by Students and
Large Language Models. Proceedings of the 2023
Conference on Innovation and Technology in Computer
Science Education V. 1, 124–130.
https://doi.org/10.1145/3587102.3588785

22. Lyu, W., Wang, Y., Chung, T. (Rachel), Sun, Y., &
Zhang, Y. (2024). Evaluating the Effectiveness of
LLMs in Introductory Computer Science Education: A
Semester-Long Field Study. Proceedings of the
Eleventh ACM Conference on Learning @ Scale, 63–74.
https://doi.org/10.1145/3657604.3662036

23. Lyu, W., Wang, Y., Tingting, Chung, Sun, Y., & Zhang,
Y. (2024). Evaluating the Effectiveness of LLMs in
Introductory Computer Science Education: A Semester-
Long Field Study. Proceedings of the Eleventh ACM
Conference on Learning @ Scale, 63–74.
https://doi.org/10.1145/3657604.3662036

24. Macneil, S., Denny, P., Tran, A., Leinonen, J.,
Bernstein, S., Hellas, A., Sarsa, S., & Kim, J. (2024).
Decoding Logic Errors: A Comparative Study on Bug
Detection by Students and Large Language Models.
Proceedings of the 26th Australasian Computing
Education Conference, 11–18.
https://doi.org/10.1145/3636243.3636245

25. Nguyen, S., Babe, H. M., Zi, Y., Guha, A., Anderson, C.
J., & Feldman, M. Q. (2024). How Beginning
Programmers and Code LLMs (Mis)read Each Other.
Proceedings of the CHI Conference on Human Factors
in Computing Systems, 1–26.
https://doi.org/10.1145/3613904.3642706

26. Pereira, A. F., & Ferreira Mello, R. (2025). A
Systematic Literature Review on Large Language
Models Applications in Computer Programming
Teaching Evaluation Process. IEEE Access, 13,
113449–113460.
https://doi.org/10.1109/ACCESS.2025.3584060

27. Petrovska, O., Clift, L., Moller, F., & Pearsall, R.
(2024). Incorporating Generative AI into Software
Development Education. Proceedings of the 8th
Conference on Computing Education Practice, 37–40.
https://doi.org/10.1145/3633053.3633057

28. Piccolo, S. R., Denny, P., Luxton-Reilly, A., Payne, S.
H., & Ridge, P. G. (2023). Evaluating a large language
model’s ability to solve programming exercises from an
introductory bioinformatics course. PLOS
Computational Biology, 19(9), e1011511.
https://doi.org/10.1371/journal.pcbi.1011511

29. Pirzado, F. A., Ahmed, A., Mendoza-Urdiales, R. A., &
Terashima-Marin, H. (2024). Navigating the Pitfalls:
Analyzing the Behavior of LLMs as a Coding Assistant
for Computer Science Students—A Systematic Review
of the Literature. IEEE Access, 12, 112605–112625.

https://doi.org/10.1109/ACCESS.2024.3443621

30. Raihan, N., Goswami, D., Puspo, S. S. C., Siddiq, M. L.,
Newman, C., Ranasinghe, T., Santos, J. C. S., &
Zampieri, M. (2025). On the performance of large
language models on introductory programming
assignments. Journal of Intelligent Information Systems.
https://doi.org/10.1007/s10844-025-00968-y

31. Raihan, N., Siddiq, M. L., Santos, J. C. S., & Zampieri,
M. (2024a). Large Language Models in Computer
Science Education: A Systematic Literature Review (No.
arXiv:2410.16349). arXiv.
https://doi.org/10.48550/arXiv.2410.16349

32. Raihan, N., Siddiq, M. L., Santos, J. C. S., & Zampieri,
M. (2024b). Large Language Models in Computer
Science Education: A Systematic Literature Review (No.
arXiv:2410.16349). arXiv.
https://doi.org/10.48550/arXiv.2410.16349

33. Raihan, N., Siddiq, M. L., Santos, J. C. S., & Zampieri,
M. (2025a). Large Language Models in Computer
Science Education: A Systematic Literature Review.
Proceedings of the 56th ACM Technical Symposium on
Computer Science Education V. 1, 938–944.
https://doi.org/10.1145/3641554.3701863

34. Raihan, N., Siddiq, M. L., Santos, J. C. S., & Zampieri,
M. (2025b). Large Language Models in Computer
Science Education: A Systematic Literature Review.
Proceedings of the 56th ACM Technical Symposium on
Computer Science Education V. 1, 938–944.
https://doi.org/10.1145/3641554.3701863

35. Rajala, J., Hukkanen, J., Hartikainen, M., & Niemelä, P.
(2023). “\”Call me Kiran\" – ChatGPT as a Tutoring
Chatbot in a Computer Science Course". 26th
International Academic Mindtrek Conference, 83–94.
https://doi.org/10.1145/3616961.3616974

36. Shahzad, T., Mazhar, T., Tariq, M. U., Ahmad, W.,
Ouahada, K., & Hamam, H. (2025). A comprehensive
review of large language models: Issues and solutions in
learning environments. Discover Sustainability, 6(1), 27.
https://doi.org/10.1007/s43621-025-00815-8

37. Shen, Y., Ai, X., Soosai Raj, A. G., Leo John, R. J., &
Syamkumar, M. (2024). Implications of ChatGPT for
Data Science Education. Proceedings of the 55th ACM
Technical Symposium on Computer Science Education
V. 1, 1230–1236.
https://doi.org/10.1145/3626252.3630874

38. Tanay, B., Arinze, L., Joshi, S., Davis, K., & Davis, J.
(2024). An Exploratory Study on Upper-Level
Computing Students’ Use of Large Language Models as
Tools in a Semester-Long Project. 2024 ASEE Annual
Conference & Exposition Proceedings, 46557.
https://doi.org/10.18260/1-2--46557

https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3657604.3662036
https://doi.org/10.1145/3657604.3662036
https://doi.org/10.1145/3636243.3636245
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1109/ACCESS.2025.3584060
https://doi.org/10.1145/3633053.3633057
https://doi.org/10.1371/journal.pcbi.1011511
https://doi.org/10.1109/ACCESS.2024.3443621
https://doi.org/10.1007/s10844-025-00968-y
https://doi.org/10.48550/arXiv.2410.16349
https://doi.org/10.48550/arXiv.2410.16349
https://doi.org/10.1145/3641554.3701863
https://doi.org/10.1145/3641554.3701863
https://doi.org/10.1145/3616961.3616974
https://doi.org/10.1007/s43621-025-00815-8
https://doi.org/10.1145/3626252.3630874
https://doi.org/10.18260/1-2--46557

	Background
	II.METHODS
	Protocol
	Sources and Timeframe
	Inclusion and Exclusion Criteria
	Screening and Extraction
	Synthesis Approach

	III.RESULTS
	.Study Selection (PRISMA Flow)
	RQ1: Applications of LLMs as Programming Tutors
	RQ2: Learning Effectiveness and Student Outcomes
	RQ3: Recurring Error Patterns and Failure Modes
	RQ4: Academic Integrity and Assessment Practices
	RQ5: Contextual Moderators Influencing Outcomes

	IV.DISCUSSION
	Quality Appraisal and Limitations
	Implications and Recommendations
	For Instructors:
	For Assessment Leads:
	For Departments:
	For Researchers:

	V.CONCLUSION

