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Abstract: Perishable food supply chains are exposed to pronounced demand volatility driven by promotions, weather, and festival effects;
consequently, traditional statistical forecasters often yield biased or lagged signals that propagate into stockouts, overstocking, and
avoidable waste. This work presents an integrated decision-support framework that couples multi-horizon, exogenous-aware time series
forecasting with inventory optimization tailored to perishable goods. The forecasting layer benchmarks classical models against machine
learning (gradient-boosted trees, ensembles) and deep learning architectures (LSTM/GRU, Temporal Fusion Transformer, PatchTST),
explicitly incorporating external covariates to capture non-linear and non-stationary demand regimes. Forecast distributions then feed an
optimization layer that applies the Economic Order Quantity model for relatively stable items and the Newsvendor formulation, as well as
linear/mixed-integer programs, for short-life products across SKU-store hierarchies. The system is evaluated using statistical accuracy
metrics (MAPE, RMSE, Bias) and operational key performance indicators (service level, fill rate, holding cost, and wastage percentage).
An interactive dashboard operationalizes these components, enabling scenario analysis and proactive alerts for stockout or overstock risk.
By jointly improving forecast fidelity and translating predictions into implementable replenishment rules, the framework targets
measurable reductions in waste and cost while sustaining customer service levels in real-world retail contexts.
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Newsvendor Model,; Linear Programming,; Decision-Support Dashboard
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LINTRODUCTION multi-horizon time series forecasting. By incorporating
contextual variables such as price, promotions, and weather,
these models deliver forecasts that are more adaptive and
granular than conventional baselines. The integration of such
forecasts with decision-oriented optimization techniques—Iike
the Economic Order Quantity (EOQ) and Newsvendor

formulations—enables a unified pipeline that links predictive

Modern food retail supply chains operate under high
uncertainty due to volatile consumer demand, short product
shelf life, and complex multi-echelon inventory structures.
Perishable items such as dairy, bakery, fruits, and vegetables
are particularly vulnerable to forecasting errors that can trigger
cascading inefficiencies across the logistics network.

Underestimations lead to stockouts and lost sales, whereas intelligence with prescriptive action.

overestimations result in excess inventory, spoilage, and
financial loss. In this context, accurate demand forecasting and
optimal inventory management become central to operational
sustainability and profit protection.

Traditional  statistical  techniques—such as ARIMA,
exponential smoothing, or regression models—often struggle
to capture non-stationary demand patterns influenced by
dynamic exogenous factors including weather, regional
festivals, or promotional campaigns. These methods typically
assume linearity and stationarity, limiting their effectiveness in
complex retail environments where multiple external drivers
interact non-linearly with customer behavior. Consequently,
there has been a significant shift toward the integration of
Artificial Intelligence (AI) and Machine Learning (ML)
approaches capable of learning temporal dependencies and
non-linear feature interactions directly from data.

Recent advances in deep learning architectures—notably the
Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), and attention-based Temporal Fusion Transformer
(TFT) models—have demonstrated superior performance in
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The proposed study builds upon these developments to design
an Al-driven decision-support system for perishable food
supply chains. The system unifies data ingestion, cleaning, and
feature engineering modules with forecasting engines and
inventory optimization solvers. Moreover, an interactive
dashboard bridges analytics with managerial decision-making,
allowing planners to simulate “what-if” scenarios and
proactively mitigate risks of waste or shortage. Evaluation
metrics span both statistical accuracy (MAPE, RMSE, Bias)
and operational outcomes (service level, fill rate, cost
efficiency), ensuring end-to-end performance validation.

In essence, this work contributes to the growing literature on
intelligent supply chain analytics by proposing a hybrid
framework that transforms raw historical and contextual data
into actionable insights for replenishment and waste
minimization. It demonstrates how predictive-prescriptive
integration—enabled by Al—can enhance responsiveness and
resilience in perishable food supply networks.
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II LITERATURE SURVEY
1 Traditional Forecasting Methods

e C(lassical statistical approaches such as ARIMA,
SARIMA, and Exponential Smoothing have long
dominated retail demand forecasting [1], [2].

e These models assume linear and stationary data,
which limits their ability to capture dynamic, multi-
factor demand patterns [3].

e Studies in dairy and bakery supply chains report
acceptable short-term accuracy but frequent lag
during sudden demand shifts [4].

2 Machine Learning—Based Forecasting

e Transitioning to machine learning (ML) algorithms—
Random Forest, XGBoost, Gradient Boosted Trees—
improved performance by modeling non-linear
relationships [5], [6].

e ML models ecasily integrate external regressors
(weather, holidays, promotions) without strict
assumptions [7].

e Retail case studies show MAPE reductions of 10—
15 % and better adaptation to regional seasonality [8].

e Hybrid models combining ARIMA + ML regressors
outperform pure statistical baselines [9].

3 Deep Learning for Time-Series Prediction

e Recurrent architectures such as LSTM and GRU
capture long-term dependencies in sequential data
[10].

e Deep networks outperform ARIMA and regression
models by =20 % on perishable-goods datasets [11].

e Emerging models—Temporal Convolutional
Networks (TCN) and Temporal Fusion Transformer
(TFT)—enable interpretable, multi-horizon
forecasting [12], [13].

e These architectures efficiently handle seasonality and
multi-step-ahead predictions [14].

4 Inventory Optimization Models

e Economic Order Quantity (EOQ) remains standard
for stable, non-perishable items [15].

e For perishable goods, Newsvendor and Stochastic
Dynamic Programming (SDP) models minimize
combined shortage + holding costs [16], [17].

e Integrating ML-based forecasts into these
optimization layers improves service level while
reducing waste [18].

e Large-scale, multi-store problems use Linear
Programming (LP) and Mixed-Integer Programming
(MIP) formulations [19].
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5 Integrated Forecasting—Optimization Frameworks

e End-to-end  frameworks coupling  Al-based
forecasting with inventory optimization deliver
significant cost savings [20].

e LSTM + EOQ/Newsvendor systems reduce wastage
by 15-30 % in perishable categories [21].

e However, interpretability, computational complexity,
and real-world scalability remain open challenges
[22].

6 Decision Support and Visualization Systems

e Research highlights dashboard-driven Decision
Support Systems (DSS) for real-time analytics [23].

e Tools such as Streamlit and Power BI visualize SKU-
level forecasts and alert planners to risks [24].

e Interactive DSS platforms enable scenario simulation
(e.g., weather shocks, promotional surges) [25].

7 Research Gap Identification

e Current studies rarely integrate Al forecasting,
optimization, and real-time visualization within a
unified framework [26].

e Few models quantify forecast uncertainty or apply
explainable-Al (XAI) reasoning for perishable-
inventory decisions [27].

e Hence, a scalable, transparent, and adaptive Al-driven
pipeline remains an open research direction [28].

III PROBLEM STATEMENT

The problem addressed in this study is the challenge of
accurately forecasting demand and optimizing inventory for
perishable food products in supply chains characterized by
dynamic, uncertain, and multi-factorial demand patterns.
Traditional forecasting methods fail to capture the impact of
external factors such as weather, promotions, and regional
events, leading to inaccurate predictions and inefficient
replenishment decisions.
This results in stockouts, overstocking, and excessive wastage,
which significantly affect both profitability and sustainability.

Therefore, there is a need to design an Al-driven framework
that integrates advanced time series forecasting models with
inventory optimization techniques, capable of learning from
complex data sources and supporting decision-making in
perishable food supply chains.
Such a system should improve forecast accuracy, minimize
wastage, and enhance service levels through predictive—
prescriptive integration.

IV OBJECTIVES

The primary objective of this research is to develop an Al-
based framework for time series forecasting and inventory
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optimization in  perishable = food  supply chains. 4. To evaluate system performance using statistical

The framework aims to enhance demand prediction accuracy,
optimize stock replenishment, and reduce wastage.

Specific Objectives

1. To collect and preprocess real-time and historical data
related to perishable food supply chains, including
sales, inventory, weather, and promotional factors.

2. To design and implement advanced forecasting
models using Machine Learning (ML) and Deep
Learning (DL) techniques for accurate demand
prediction.

3. To integrate the forecasting component with

inventory optimization models such as EOQ and
Newsvendor to minimize costs and wastage.

metrics (MAPE, RMSE) and operational metrics
(service level, wastage percentage).

To develop a decision-support dashboard for real-time
visualization, analysis, and scenario simulation for
supply chain managers.

V SYSTEM ARCHITECTURE

The proposed system architecture is designed as a modular,
end-to-end framework that integrates data collection,
forecasting, optimization, and visualization into a single
decision-support pipeline. It comprises five primary layers:
Data Ingestion Layer, Forecasting Layer, Inventory
Optimization Layer, Evaluation Layer, and Visualization &
Decision-Support Layer. Each layer interacts through defined

data interfaces, ensuring scalability, transparency, and
interoperability across diverse perishable food supply
environments.

System Architecture
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Figure 1 System architecture

This foundational layer handles the extraction, transformation,
and loading (ETL) of heterogeneous data
It integrates:

sources.

e Historical sales data from stores or warehouses.

e Inventory and stock movement logs (including

stockouts or censored data).
Exogenous variables such as weather, temperature,

holidays, promotions, and regional events.

Data preprocessing involves cleaning, imputation of missing
values, outlier correction, and feature engineering to derive lag
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variables, moving averages, and seasonality indicators. The
structured dataset is organized into SKU-Store—Time
hierarchies, suitable for multi-horizon time series modeling.

Results

The proposed Al-based framework is expected to yield notable
improvements in both forecasting accuracy and inventory
efficiency for perishable food supply chains.

e Forecasting Accuracy: Machine Learning and Deep
Learning models such as LSTM, GRU, and TFT are
projected to reduce forecasting errors (MAPE, RMSE)

by 15-25 % compared to ARIMA/SARIMA baselines,
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owing to their ability to capture non-linear, multi-
factor demand patterns.

e Inventory Optimization: Integration of forecast
outputs with EOQ and Newsvendor models will likely
lower wastage by 20-30 %, enhance service level by
5-10 %, and reduce overall inventory cost by 10—
20 %.

e Decision Support: The interactive dashboard enables
real-time monitoring of KPIs and scenario analysis,
improving planning transparency and responsiveness.

e Sustainability Impact: The system promotes reduced
spoilage, improved resource utilization, and data-
driven replenishment aligned with sustainability goals.
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