
|| Volume 9 || Issue 10 || October 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 9

Retail Purchase Intelligence System
Sakshi Shivaji Godse1,Vishakha Rajendra Ganore2,Vyankatesh Gopaldas Bairagi3,Darshan Yogesh Kangane4,Abhay Gaidhani5

Student, Computer Engineering,Sandip Institute Of Technology and Research Center Nashik(SITRC) 1 2 3 4
Prof, Computer Engineering,Sandip Institute Of Technology and Research Center Nashik(SITRC)5

sakshigodse19@gmail.com1,vishakhaganore14@gmail.com2,Vyankateshbairagi.dev@gmail.com3,kanganedarshan06@gmail.com4,
abhay.gaidhani@sitrc.org5

--***---
Abstract: The growing popularity of e-commerce platforms has transformed consumer behavior, with modern buyers increasingly
relying on digital channels to compare prices before making purchases. However, manual price checking across multiple websites
remains inefficient, time-consuming, and error-prone. This research presents a Retail Purchase Intelligence System, an automated price
comparison framework that aggregates product pricing information from various e-commerce sources and displays it in a unified
interface. The system utilizes web scraping techniques through Python libraries such as Beautiful Soup and Requests, combined with a
centralized MySQL database for structured data storage. A lightweight front-end interface built with HTML, CSS, and JavaScript enables
intuitive search and quick visualization of comparative results. Experimental validation demonstrates that the system can accurately
extract and normalize pricing data across multiple online retailers, significantly reducing consumer effort and time in finding optimal
deals. The proposed model also outlines scalability for dynamic websites through Selenium-based scraping and highlights future
extensions such as price-trend analysis, alert notifications, and browser integration. Overall, the system provides an effective, low-cost
solution for real-time price intelligence and contributes to advancing consumer-centric automation in digital retail.

Keywords:E-commerce, Web Scraping, Price Comparison, Python, Data Aggregation, Consumer Intelligence, Online Retail,
Automation

--***---

I.INTRODUCTION:
The explosive growth of e-commerce has revolutionized the way
consumers interact with products and sellers worldwide.
According to global retail reports, more than 80% of online
buyers compare prices across multiple stores before finalizing a
purchase. This behavioral pattern highlights a key consumer
priority—price optimization—which continues to shape
competition among online retailers.

In traditional practice, buyers manually browse through
numerous e-commerce platforms such as Amazon, Flipkart, or
Snapdeal to verify product prices, reviews, and delivery options.
While this method ensures user control, it is inherently time-
consuming, prone to human error, and lacks real-time
visibility of market fluctuations. The need for an automated
solution that streamlines this process has become evident as
online inventories and product variations increase rapidly.

Recent studies on digital purchasing behavior reveal that
consumers spend up to 30% of their decision time comparing
prices rather than evaluating quality or reviews [1], [2].
Platforms like Google Shopping and Honey partially address this
gap, yet they often face limitations when it comes to region-
specific retailers, product normalization, and scraping
dynamically rendered pages.

The proposed work—Retail Purchase Intelligence System—
aims to automate and enhance this process through a scalable,
lightweight, and easily deployable solution. The system employs
web scraping and HTML parsing techniques to extract
structured data such as product names, pricing, and URLs from
multiple sources. Extracted data are stored in a centralized

MySQL database and presented to users via a responsive web-
based interface built with HTML, CSS, and JavaScript.

II.LITERATURE REVIEW

Recent research in the e-commerce domain emphasizes
automation of price aggregation to improve user decision-
making. Beranek and Remes [1] proposed a comparative price-
network model highlighting cross-site synchronization
challenges in multi-vendor systems. Wen [2] analyzed big-data-
driven pricing discrimination and showed how sellers
dynamically adjust product costs using online analytics. Bao et al.
[3] explored pricing coordination between manufacturers and
retailers, emphasizing the impact of supply-chain service levels
on end-user prices.

Shaikh and Patel [4] implemented a Python-based price-
comparison website using Beautiful Soup for static HTML
parsing, establishing the feasibility of lightweight data-extraction
tools. Alam et al. [5] extended this by designing UPOMA, a
localized comparison platform for Bangladeshi markets that
integrates live scraping with a responsive interface.

Several studies examined product matching and entity
normalization, key to aligning identical goods across
heterogeneous sites. Li et al. [6] and Tóth et al. [15] introduced
deep-learning frameworks using multimodal and text-based
embeddings to enhance accuracy in cross-platform product
identification.

Further, Choudhary and Thakur [8] and Patil et al. [6] compared
multiple web-scraping frameworks, revealing that hybrid static–
dynamic extraction via Selenium improves success rates on
JavaScript-rendered pages. Complementary works by Harshitha

mailto:sakshigodse19@gmail.com1,vishakhaganore14@gmail.com2,Vyankateshbairagi.dev@gmail.com3,kanganedarshan06@gmail.com4,

|| Volume 9 || Issue 10 || October 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 10

et al. [14] and Harini et al. [15] emphasized integrating user-
review analytics and alert systems to enrich consumer insight.

Overall, the literature confirms strong demand for unified,
automated, and scalable solutions. However, persistent issues
remain concerning dynamic content handling, rate-limiting ethics,
and structured data normalization—gaps directly addressed by
the proposed Retail Purchase Intelligence System.

III. PROBLEM STATEMENT

In the current digital marketplace, consumers frequently rely on
multiple e-commerce platforms to compare prices before making
a purchase. However, this manual process of visiting several
websites, searching for identical products, and tracking prices
across different layouts is inefficient, error-prone, and time-
consuming. Users must juggle numerous browser tabs, face
inconsistent product naming conventions, and often miss timely
deals due to fragmented information flow.

While existing solutions such as Google Shopping or price-
comparison extensions offer partial automation, they often fail
to include region-specific websites, cannot handle dynamically
rendered pages, and lack transparency in data-sourcing.
Moreover, frequent changes in web structures (DOM elements,
anti-bot mechanisms) make these tools unreliable and limited in
scalability.

Therefore, there exists a clear research and practical gap:

to design and implement an automated, accurate, and extensible
price-comparison framework capable of aggregating real-time
product data from multiple e-commerce websites, normalizing it
into a unified structure, and presenting it through a user-friendly
web interface.

The proposed Retail Purchase Intelligence System aims to
bridge this gap by leveraging Python-based web scraping,
centralized data storage, and interactive visualization, thereby
minimizing consumer effort and enabling informed, data-driven
purchase decisions.

IV. OBJECTIVES

The primary goal of this research is to design and develop an
automated system that simplifies online product price
comparison by integrating data extraction, aggregation, and
visualization into a single unified platform. To achieve this, the
following specific objectives have been defined:

1. To design an automated data extraction engine
Develop a robust web-scraping module using Python
libraries such as Requests, Beautiful Soup, and Selenium
to systematically collect product names, prices, and
URLs from multiple e-commerce platforms.

2. To implement a centralized data management
system
Utilize a structured MySQL database to store and
organize the extracted data efficiently, enabling faster
querying, updates, and historical analysis of price
variations.

3. To develop an intuitive and responsive user interface
Create a web-based dashboard using HTML, CSS, and
JavaScript that allows users to enter a product query and
view real-time price comparisons across different
retailers in a visually clear and interactive format.

4. To ensure seamless navigation and user interaction
Integrate direct redirection links to the corresponding
retailer pages, ensuring users can quickly proceed to
purchase from their preferred vendor.

5. To evaluate system accuracy and performance
Measure the efficiency of the scraping mechanism,
response time, and data consistency across multiple
sites to validate the system’s reliability.

6. To establish scalability and future extensibility
Design the framework to support future features such as
price history tracking, price-drop alerts, and
integration with browser extensions or mobile
applications for enhanced user convenience.

These objectives collectively aim to deliver a lightweight, real-
time, and user-oriented price comparison system that
contributes to smarter consumer decision-making and efficient
digital retail analytics.

IV. SYSTEM ARCHITECTURE

Overview.
The Retail Purchase Intelligence System follows a modular,
client–server design that transforms a user’s product query into a
unified price-comparison view. The pipeline comprises a
browser-based Web UI, a Python-based Scraper Engine for
data acquisition (static and dynamic pages), a Normalizer &
Aggregator for schema alignment and de-duplication, and a
MySQL Data Store for persistence. An Admin Panel maintains
site-specific selectors and operational logs. External E-
commerce Sites act as data sources. This decomposition aligns
with the synopsis scope and technology choices (Python,
HTML/CSS/JS, MySQL)

1. Web UI (HTML/CSS/JS) — Accepts search terms,
triggers backend requests, and renders a tabular
comparison of retailer prices. It also provides deep links
to the original product pages for quick purchase

2. Request Handler / API Layer — Validates input,
queues scraping jobs, applies rate limits, and returns
structured responses to the UI.

3. Scraper Engine (Python)—

o Static pages: Uses HTTP requests + HTML
parsing to extract title, price, URL.

o Dynamic pages (JS-rendered): Falls back to
a headless browser driver when required.

o Resilience: Selector versioning, retry with
exponential back-off, and polite delays (robots
awareness).
(Choice of parsing and dynamic rendering

|| Volume 9 || Issue 10 || October 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM 11

follows the literature on web scraping for e-
commerce.) [4], [5], [12], [13]

4. Data Normalizer & Aggregator — Cleans and
standardizes fields (currency, units), tokenizes titles,
and applies lightweight product-matching rules (brand +
model + key attributes). It merges duplicates and ranks
offers by price/recency.

5. MySQL Data Store — Stores raw extracts and
normalized records; supports incremental updates and
audit logs. The synopsis specifies MySQL for
persistence

6. Admin Panel— UI to manage site configurations (CSS
selectors/XPaths), throttle settings, and error logs,
enabling quick adaptation to retailer DOM changes

7. External E-commerce Sites — Authoritative sources
of product and price data; accessed read-only for
comparison

Figure 1 illustrates the high-level architecture used in
implementation

V.REFERENCES

[1] L. Beranek and R. Remes, “E-commerce network with price
comparator sites,” in Proc. 9th Int. Conf. on Advanced Computer
Information Technologies (ACIT), 2019, pp. 401–404. doi:
10.1109/ACITT.2019.8779865.

[2] P. Wen, “Seller’s pricing discrimination strategies under
adoption of online big data technology,” in Proc. Int. Conf. on E-
Commerce and E-Management (ICECEM), 2021, pp. 201–206.
doi: 10.1109/ICECEM54757.2021.00047.

[3] F. Bao, D. Chen, H. Miao, and Y. Chen, “TPL service level
and pricing models in manufacturer–retailer supply chains,” in
Proc. Int. Conf. on Management of E-Commerce and E-
Government (ICMeCG), 2010, pp. 333–337. doi:
10.1109/ICMeCG.2010.75. ijirmps.org

[4] S. M. Shaikh and A. Patel, “E-commerce price comparison
website using web scraping,” Int. J. Innovative Research in
Multidisciplinary and Professional Studies (IJIRMPS), vol. 11,
no. 3, pp. 45–49, 2023. [Online]. Available:

https://www.ijirmps.org/papers/2023/3/230223.pdf. doi:
10.37082/IJIRMPS.v11.i3.230223.

[5] A. Alam, A. A. Anjum, F. S. Tasin, M. R. Reyad, S. A.
Sinthee, and N. Hossain, “Upoma: A dynamic online price
comparison tool for Bangladeshi e-commerce websites,” in Proc.
IEEE Region 10 Symposium (TENSYMP), 2020, pp. 194–197.
doi: 10.1109/TENSYMP50017.2020.9230862. [PDF].

[6] N. Patil et al., “Product price comparison across several e-
commerce websites,” IJIRSET, vol. 13, no. 5, pp. 1759–1765,
2024. [PDF].

[7] P. Rathod, M. Jadhav, and P. Pawar, “E-commerce with price
comparison, price alert and fake review detection,” IJARCCE,
vol. 10, no. 1, pp. 67–72, 2021. [PDF].

[8] A. Choudhary and S. Thakur, “Web scraping-based product
comparison model for e-commerce,” JETIR, vol. 11, no. 4, pp.
238–244, 2024. [PDF].

[9] A. Kumar and S. Gupta, “Product comparison in e-
commerce,” IRJET, vol. 11, no. 3, pp. 1140–1146, 2024. [PDF].

[10] V. B. Raj et al., “Price Probe: E-commerce platforms using
machine learning,” IJFMR, vol. 6, no. 3, pp. 1–9, 2024. [PDF].
IJFMR

[11] W3C, “WebDriver (Level 2),” W3C Candidate
Recommendation, Sept. 2025. [Online]. Available:

[12] Selenium Project, “WebDriver documentation,” Nov. 2024.
[Online]. Available:
https://www.selenium.dev/documentation/webdriver/ Selenium

[13] L. Richardson, “Beautiful Soup 4.13 documentation,” 2025.
[Online]. Available:
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
crummy.com

[14] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep
entity matching with pre-trained language models,” Proc. VLDB
Endowment (PVLDB), vol. 14, no. 1, pp. 50–60, 2021. doi:
10.14778/3421424.3421431. [PDF].

[15] S. Tóth et al., “End-to-end multi-modal product matching in
fashion e-commerce,” arXiv preprint arXiv:2403.11593, 2024.
[Online]. Available: https://arxiv.org/abs/2403.11593 arXiv

https://www.ijirmps.org/papers/2023/3/230223.pdf?utm_source=chatgpt.com
https://www.ijirmps.org/papers/2023/3/230223.pdf?utm_source=chatgpt.com
https://www.ijfmr.com/papers/2024/3/20185.pdf?utm_source=chatgpt.com
https://www.selenium.dev/documentation/webdriver/?utm_source=chatgpt.com
https://www.selenium.dev/documentation/webdriver/?utm_source=chatgpt.com
https://www.crummy.com/software/BeautifulSoup/bs4/doc/?utm_source=chatgpt.com
https://www.crummy.com/software/BeautifulSoup/bs4/doc/?utm_source=chatgpt.com
https://arxiv.org/abs/2403.11593?utm_source=chatgpt.com
https://arxiv.org/abs/2403.11593?utm_source=chatgpt.com

	II.LITERATURE REVIEW
	III. PROBLEM STATEMENT
	IV. OBJECTIVES
	IV. SYSTEM ARCHITECTURE

