

# INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

#### AND ENGINEERING TRENDS

# Digital Transformation in Education: The Role of IT, MOOCs, and LMS in Shaping Learning Ecosystem

#### Er. Ritu Walia

Assistant Professor, Department of Computer Science, Mata Gujri College, Fatehgarh Sahib

Abstract: Information Technology (IT) has progressively transformed the education sector, reshaping the way knowledge is delivered, accessed, and managed. Among the diverse digital tools available, Massive Open Online Courses (MOOCs) and Learning Management Systems (LMS) have emerged as two of the most influential innovations. This review paper synthesizes prior research on the role of IT in education, with a particular focus on MOOCs and LMS, highlighting their contributions, limitations, and future potential. The review draws upon scholarly contributions from established databases to analyze how MOOCs and LMS have addressed long-standing educational challenges. MOOCs have extended opportunities for large-scale participation and flexible learning at minimal cost, while LMS platforms have enabled structured course management, performance tracking, and personalized learning pathways. Together, these tools reflect a broader shift toward scalable, accessible, and student-centered education. However, persistent challenges such as uneven digital infrastructure, low course completion rates, limited faculty readiness, and concerns about data privacy remain barriers to effective-adoption.

By comparing the features, benefits, and limitations of MOOCs and LMS, this paper identifies key gaps in existing literature and proposes directions for future research. The findings suggest that the integration of MOOCs and LMS, coupled with advancements in analytics and blended learning models, holds promise for addressing equity, efficiency, and quality in digital education. **Keywords:** *Education Technology, MOOCs, Learning Management Systems, E-Learning, ICT in Education, Digital Learning Platforms.* 

\*\*\*<u></u>

#### I.INTRODUCTION:

#### A. Background and Context

The integration of Information Technology (IT) into education has gradually reshaped the conventional learning environment [4]. Traditional classrooms, once limited by physical presence and printed resources, began adopting digital tools to extend access, flexibility, and efficiency in teaching and learning [11]. Early initiatives in e-learning platforms and computer-assisted instruction paved the way for large-scale digital education ecosystems [8]. Two of the most influential developments in this transformation were Massive Open Online Courses (MOOCs) and Learning Management Systems (LMS) [1].

MOOCs emerged as a response to the need for open and flexible access to quality education [2]. By providing online courses at scale, they made it possible for learners worldwide to enroll in structured learning programs, often at little or no cost [3]. On the other hand, LMS platforms gained traction within institutions by offering integrated environments for managing courses, assessments, and learner progress [12]. Both technologies became central pillars of digital learning strategies, reflecting a broader shift toward inclusive and technology-enabled education [7].

#### B. Problem Statement / Research Gap

Although MOOCs and LMS transformed access to education, several challenges remained unresolved [5]. MOOCs often struggled with low completion rates, limited mechanisms for student engagement, and questions about credential recognition [2]. LMS platforms, while effective for structured course delivery, frequently faced adoption barriers due to insufficient technical infrastructure, lack of faculty training, and limited interoperability between systems [13].

Prior studies have typically analyzed MOOCs and LMS in isolation, focusing either on large-scale open education or institution-centered course management [1]. However, comparative reviews that synthesize both domains together remain limited [7]. This gap restricts understanding of how these systems can complement one another to strengthen modern education [1].

## C. Objectives of the Study

The objectives of this review paper are as follows:

- 1. To examine the evolution, features, and adoption of MOOCs and LMS as leading IT tools in education.
- 2. To synthesize existing literature and highlight common benefits and challenges.
- 3. To conduct a comparative analysis of MOOCs and LMS, identifying complementarities and limitations.
- 4. To propose directions for future research and practice in digital education.

# **D.** Contribution of this Paper

This paper contributes to the academic discourse in three ways. First, it consolidates fragmented studies on MOOCs and LMS into a unified comparative framework. Second, it identifies persistent challenges and limitations in adoption, particularly regarding infrastructure, engagement, and data security. Third, it outlines future pathways for integrating MOOCs and LMS into blended and hybrid learning models, thereby enhancing accessibility, scalability, and learner-centered approaches.

#### **II.REVIEW METHODOLOGY**

#### A. Literature Sources

To ensure academic rigor, this review relied on established scholarly databases, including IEEE Xplore, Scopus,



# INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

#### AND ENGINEERING TRENDS

SpringerLink, ACM Digital Library, and ScienceDirect [4]. These sources were selected due to their high indexing standards and frequent publication of research on education technology [1]. Only peer-reviewed journal articles, conference proceedings, and high-impact studies were considered to maintain the quality of evidence [3].

#### **B.** Time Frame of Selection

The scope of this review was restricted to literature published up to mid-2019, as this period reflects the maturity of MOOCs and LMS adoption before subsequent global changes in digital education [2]. This ensured that the findings are situated in the context of early adoption trends and challenges rather than influenced by more recent events [1].

#### C. Inclusion and Exclusion Criteria

#### **Inclusion:**

- Studies focusing on MOOCs or LMS in higher education, school education, or professional training [1].
- Papers discussing adoption, benefits, limitations, or comparative insights [3].
- Articles presenting case studies, surveys, or systematic reviews on MOOCs/LMS [5].

#### **Exclusion:**

- Works unrelated to education (e.g., MOOCs for non-academic training without academic evaluation) [3].
- Non-peer-reviewed sources such as blogs, editorials, and opinion pieces [4].
- Papers emphasizing post-2019 digital education trends or tools beyond MOOCs and LMS [2].

#### D. Classification Scheme

The reviewed literature was categorized into four thematic clusters [1]:

- General Developments in Educational IT papers addressing the broader role of technology in education [4].
- MOOCs studies focusing on evolution, benefits, pedagogy, and limitations of massive open online courses [2].
- 3. **LMS** research centered on institutional adoption, features, and implementation barriers of learning management systems [13].
- 4. **Comparative Analyses** works exploring the relationship between MOOCs and LMS or their complementary use in blended education models [7].

## E. Approach to Synthesis

The selected studies were systematically analyzed to extract recurring themes, innovations, and critical challenges [1]. Emphasis was placed on identifying convergences (common benefits), divergences (domain-specific limitations), and research gaps [3]. Findings were then synthesized into comparative tables,

visual charts, and narrative discussion to ensure both clarity and depth [4].

#### III.THEMATIC LITERATURE REVIEW

## 3.1 IT in Education: General Developments

The integration of Information Technology (IT) in education marked a significant shift from traditional classroom-based instruction toward digitally supported learning environments [4]. Early research emphasized the role of IT in enhancing accessibility, enabling interactive pedagogy, and fostering collaborative learning [11]. Digital platforms allowed institutions to expand their outreach to geographically dispersed learners, while multimedia resources improved engagement and comprehension [8]. The introduction of cloud-based tools, elearning platforms, and digital repositories created new possibilities for flexible and student-centered learning [4].

Despite these benefits, the literature also pointed out several challenges [11]. Digital divides between urban and rural areas limited equitable access, while inadequate training for educators slowed effective implementation [11]. Moreover, concerns related to standardization of content and the sustainability of technology adoption raised questions about long-term impact [4]. These general developments set the stage for the emergence of more specialized platforms such as MOOCs and LMS [1].

#### 3.2 MOOCs (Massive Open Online Courses)

MOOCs emerged as one of the most transformative innovations in education technology [1]. Their core principle was open access, allowing learners to enroll in courses without traditional entry barriers [2]. Studies documented their rapid expansion across universities and institutions, offering courses in diverse disciplines to global audiences [3].

**Features:** MOOCs typically provided video lectures, reading materials, discussion forums, and automated assessments [9]. Some platforms integrated peer review mechanisms, enabling large-scale participation in assignments [9].

## **Benefits:**

- **Scalability**: ability to reach thousands of learners simultaneously [2].
- Flexibility: anytime, anywhere learning [1].
- **Cost-effectiveness**: low or zero enrollment fees [3].
- **Lifelong learning**: opportunities for professionals to upskill [1].

#### **Limitations:**

- Low completion rates due to lack of motivation and support [5].
- Limited personalization, as most courses followed one-sizefits-all formats [3].
- Concerns over the credibility of certification [2].
- Reduced interaction with instructors compared to traditional learning [10].



## INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

#### AND ENGINEERING TRENDS

Research prior to 2019 highlighted that while MOOCs had significant potential for democratizing education, their effectiveness depended on improving learner engagement, support mechanisms, and recognition by formal institutions [6].

#### 3.3 Learning Management Systems (LMS)

LMS platforms became central to institutional adoption of IT in education [12]. Unlike MOOCs, which were open and global, LMS solutions were typically used within schools, colleges, and universities to manage courses and track student progress [13].

**Features:** LMS platforms provided functionalities such as course creation, resource distribution, attendance tracking, communication tools, and assessment management [13]. Advanced systems also offered analytics dashboards for monitoring learner performance [14].

#### **Benefits:**

Structured and centralized course management [12].

- Enhanced communication between educators and students [13].
- Support for blended and flipped classroom models [14].
- Data-driven insights into learner performance [15].

#### Limitations:

- High implementation and maintenance costs [13].
- Need for technical training among educators [14].
- Limited interoperability across platforms [15].
- Dependence on reliable internet and digital infrastructure [13].

Pre-2019 studies recognized LMS as a powerful enabler of organized digital education but emphasized the necessity of faculty training and institutional readiness for successful adoption [13].

## 3.4 Comparative Studies: MOOCs vs LMS

Comparative research highlighted both the differences and complementarities of MOOCs and LMS [7]. While MOOCs provided scale, openness, and flexibility, LMS offered structure, control, and institutional integration [1]. MOOCs served as gateways for lifelong learners and global participants, whereas LMS supported degree-oriented education within formal institutions [2].

# Key insights from comparative studies include:

- **Complementary Role**: LMS could integrate MOOCs as external modules, creating blended education models [7].
- Adoption Patterns: MOOCs were more prevalent among individuals seeking professional development, while LMS dominated formal education contexts [3].
- **Challenges:** Both systems faced issues of engagement, infrastructure dependency, and data management [5].

Scholars suggested that the future of digital education would likely involve hybrid models that combine the openness of MOOCs with the structured environment of LMS [7].

#### IV.SYNTHESIS OF FINDINGS

The review of literature on MOOCs and LMS reveals both overlapping benefits and domain-specific challenges. MOOCs excel in scalability and openness, while LMS provides structured management within institutional frameworks. Together, they represent two complementary models of digital education.

#### A. Comparative Analysis

Table 1 :summarizes the key features, benefits, and limitations of MOOCs and LMS as identified in prior studies.

Table 1: Comparative Analysis of MOOCs and LMS

| Aspect          | MOOCs (Massive Open<br>Online Courses)                           | LMS (Learnin<br>Management Systems)                                             |  |
|-----------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Access<br>Model | Open,global participation;minimal entry barriers                 | Institution-specific,<br>login required,<br>structured enrollment               |  |
| Scalability     | High thousands of learners at once                               | Moderate – typically<br>class-sized or<br>institution-sized                     |  |
| Features        | Video lectures, forums, automated assessments, peer review       | Course creation,<br>tracking, assessment<br>management, analytics               |  |
| Benefits        | Flexible,low-cost, accessible worldwide                          | Structured management,<br>personalized<br>monitoring,blended<br>support         |  |
| Limitations     | Low completion rates, limited personalization, certification gap | High setup costs,<br>technical training<br>required,<br>interoperability issues |  |

# E. Interpretation

## The synthesis indicates that:

- MOOCs are best suited for mass access, skill upgradation, and democratization of education.
- LMS excel in structured, credit-bearing education within institutions.
- Convergence point: Both systems face similar governance, equity, and infrastructure challenges.
- Future potential (as per literature): A blended ecosystem where MOOCs provide global access while



## INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

#### AND ENGINEERING TRENDS

LMS delivers local structure and assessment could maximize effectiveness.

#### V.CHALLENGES AND LIMITATIONS

#### A. Technical Barriers

The effectiveness of MOOCs and LMS is closely tied to technical infrastructure [13]. Many studies reported that insufficient internet bandwidth, unreliable connectivity, and outdated hardware limited smooth access to online platforms [12]. In resource-constrained regions, even basic participation in MOOCs became difficult, while institutional LMS adoption required investments in servers, software, and IT support staff [13]. Furthermore, lack of interoperability between different LMS platforms and the absence of standardized integration with MOOCs reduced system flexibility [15].

#### **B.** Ethical and Equity Concerns

The digitalization of education introduced ethical challenges centered on equity and data management [1]. MOOCs promised openness, yet the majority of participants tended to be from urban and technologically advanced regions, leaving rural learners underrepresented [2]. Similarly, LMS platforms often excluded students with limited digital literacy or access to personal devices [13]. Concerns about data privacy, ownership of student records, and the ethical use of learner analytics were repeatedly highlighted in the literature [14]. Without clear governance frameworks, the risk of misusing educational data posed a significant barrier to trust and adoption [15].

#### C. Adoption Barriers

Adoption challenges were evident in both MOOCs and LMS, though in different forms [3]. MOOCs struggled with learner motivation, leading to low completion rates despite high enrollment numbers [5]. Limited instructor interaction and the absence of structured mentoring were key barriers to sustained participation [6]. LMS platforms, meanwhile, faced institutional resistance, primarily due to the need for faculty training, curriculum redesign, and administrative adjustments [13]. High initial costs and the perception of steep learning curves among educators slowed institutional adoption rates [14].

## **Proposed System**

## **Conceptual Framework (Layered Model)**

This figure illustrates a five-layered conceptual framework mapping the role of Information Technology in education through MOOCs and LMS. The framework begins with a common Security & Governance layer (privacy, access control, compliance), followed by Data, Application, and Intelligence layers, each split between MOOCs (left) and LMS (right). At the top, a shared Delivery & Feedback layer integrates learner outcomes such as certificates, reports, and evaluations. Vertical arrows represent the upward flow of data, while feedback loops connect outcomes back to intelligence functions, highlighting continuous improvement. The model demonstrates both the complementary nature and distinct roles of MOOCs and LMS

within digital education ecosystems.

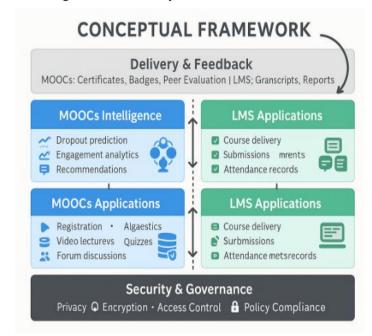



Figure 1. Conceptual Layered Architecture for IT-Enabled Education Systems (MOOCs & LMS Focus)

#### Comparative Analysis

Table 1: Functional Comparison of MOOCs and LMS

| Those It I million comparison of 1100 cs and Entitle |                                                          |                                                                   |  |  |  |
|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Layer                                                | MOOCs Functions                                          | LMS Functions                                                     |  |  |  |
| Security &<br>Governance                             | Open-access rules,<br>limited credential<br>verification | Strict role-based access, institutional compliance                |  |  |  |
| Data Layer                                           | Enrollment logs,<br>activity streams,<br>forum content   | Course syllabi, grades, assignments, attendance logs              |  |  |  |
| Application<br>Layer                                 | Registration, video lectures, auto-assessments           | Course management, submission portals, communication              |  |  |  |
| Intelligence<br>Layer                                | Dropout prediction, engagement analytics                 | Performance dashboards,<br>plagiarism check, adaptive<br>feedback |  |  |  |
| Delivery &<br>Feedback                               | Certificates, peer grading, open recognition             | Instructor grades, formal transcripts, structured reports         |  |  |  |



# INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

# AND ENGINEERING TRENDS

Table 2: Benefits vs Limitations (MOOCs vs LMS)

| Dimensio<br>n   | MOOCs<br>Advantages                            | MOOCs<br>Limitation<br>s                   | LMS<br>Advantages                                    | LMS<br>Limitation<br>s                   |
|-----------------|------------------------------------------------|--------------------------------------------|------------------------------------------------------|------------------------------------------|
| Access          | Global, open to anyone                         | Uneven<br>access,<br>digital<br>divide     | Structured enrollment, controlled access             | Restricted to institutions               |
| Scalabilit<br>y | Thousands of<br>learners<br>simultaneous<br>ly | Low<br>completion<br>rates                 | Class/instituti<br>on scale,<br>stable<br>management | Limited scalability                      |
| Pedagogy        | Flexible learning, self-paced                  | Minimal instructor support                 | Integration with curriculum, blended models          | Needs<br>curriculum<br>redesign          |
| Cost            | Low or no fees for learners                    | Certificatio<br>n<br>recognition<br>issues | Long-term institutional investment                   | High setup<br>&<br>maintenan<br>ce costs |



Figure 2. MOOCs Benefits Distribution

This pie chart highlights the distribution of benefits associated with MOOCs. Access and scalability dominate, followed by flexibility, cost-effectiveness, and lifelong learning opportunities.

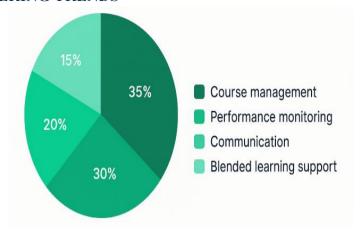



Figure 3. LMS Benefits Distribution

The chart illustrates the benefits of LMS adoption, emphasizing structured course management and performance monitoring. Communication and blended learning support contribute additional institutional value.

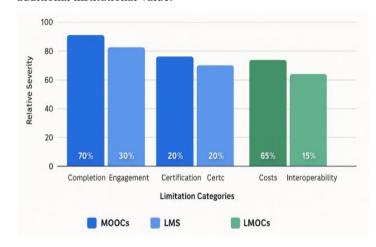



Figure 4. Limitations of MOOCs vs LMS

This bar chart compares the major limitations of MOOCs and LMS. MOOCs face challenges of completion, engagement, and certification, while LMS adoption is hindered by cost, interoperability, and training requirements.



Figure 5. Shared vs Specific Challenges in MOOCs and LMS

The stacked column chart demonstrates the proportion of shared versus system-specific issues. While both systems share



# INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

#### AND ENGINEERING TRENDS

infrastructure and equity challenges, MOOCs are more affected by completion issues, and LMS by institutional readiness barriers.

#### VI.FUTURE RESEARCH DIRECTIONS

The review of existing literature on MOOCs and LMS indicates that while these platforms have significantly advanced digital education, several unresolved issues remain that warrant further investigation. The following directions highlight potential areas for future research:

## A. Improving MOOCs Completion and Engagement

One of the most frequently cited concerns in MOOCs is the persistently low completion rate. Future research may explore new mechanisms to sustain learner motivation, such as adaptive course pathways, improved peer-to-peer interaction, and integration of mentoring support. Gamification strategies, recognition models, and enhanced feedback systems could also be tested to reduce dropout levels and improve overall learner persistence.

## B. Personalization in LMS through Analytics

Although LMS platforms provide structured course management, most lack advanced personalization features. Future studies could examine the use of learner analytics to create adaptive feedback loops, enabling institutions to tailor content to individual learning needs. Research on early warning systems to identify at-risk students and automated recommendation engines may help to improve academic outcomes within LMS environments.

## C. Blended and Hybrid Models of Learning

Given the complementary roles of MOOCs and LMS, future work should focus on their integration within blended learning models. Institutions could experiment with embedding MOOCs as supplementary resources inside LMS environments, creating hybrid systems that combine global reach with local structure. Comparative studies may analyze the effectiveness of such models in terms of learning outcomes, engagement, and scalability.

## D. Policy Development and Standardization

The lack of consistent policies regarding quality assurance, certification recognition, and data governance presents a challenge for both MOOCs and LMS. Future research can investigate frameworks for policy standardization at institutional and national levels. This includes developing interoperable standards for platforms, defining benchmarks for digital content quality, and ensuring privacy in student data management.

# E. Long-Term Sustainability

Finally, the sustainability of MOOCs and LMS depends on viable funding models, institutional support, and continuous innovation. Research is required to examine economic models for MOOCs, cost—benefit analyses for LMS implementation, and collaborative approaches between universities, governments, and private providers to ensure long-term viability.

#### VII.CONCLUSION

This review has examined the role of Information Technology in education with a particular emphasis on Massive Open Online Courses (MOOCs) and Learning Management Systems (LMS). The analysis shows that both platforms have significantly contributed to reshaping education by enhancing access, flexibility, and learner engagement, albeit in different ways. MOOCs have expanded global outreach and democratized learning opportunities, while LMS platforms have enabled structured course delivery, performance tracking, and integration into institutional curricula.

Despite their contributions, persistent challenges remain. MOOCs continue to struggle with low completion rates, limited personalization, and concerns regarding the credibility of certifications. LMS adoption, on the other hand, is constrained by high implementation costs, interoperability issues, and the need for faculty training. A notable finding across the literature is that both systems face shared limitations related to infrastructure dependency, digital equity, and governance of learner data.

The comparative synthesis suggests that neither MOOCs nor LMS can independently address all the demands of modern education. Instead, a **hybrid approach**, where MOOCs provide openness and scalability while LMS ensure structure and assessment, appears to be the most promising direction. Future work must explore strategies for enhancing engagement in MOOCs, developing personalized LMS features, and creating policy frameworks for interoperability and data governance.

In conclusion, MOOCs and LMS represent two complementary pillars of digital education. Their integration, supported by continued research and policy development, offers significant potential to improve accessibility, quality, and sustainability in education systems.

#### VIII.REFERENCES

T. R. Liyanagunawardena, A. A. Adams, and S. A. Williams, "MOOCs: A systematic study of the published literature 2008–2012," International Review of Research in Open and Distributed Learning, vol. 14, no. 3, pp. 202–227, 2013.

Available:

https://www.irrodl.org/index.php/irrodl/article/view/1455/2 602 irrodl.org

 K. Jordan, "Initial trends in enrolment and completion of massive open online courses," International Review of Research in Open and Distributed Learning, vol. 15, no. 1, pp.133–160,2014.

Available:

https://www.irrodl.org/index.php/irrodl/article/view/1651/2788 . ERIC

 F. M. Hollands and D. Tirthali, MOOCs: Expectations and Reality. New York, NY, USA: Teachers College, Columbia Univ., 2014.



## INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

#### AND ENGINEERING TRENDS

Available:

https://repository.upenn.edu/bitstreams/193f7341-d1a7-4a43-a4c6-72e6f014a5f5/download . repository.upenn.edu

- L. Yuan and S. Powell, MOOCs and Open Education: Implications for Higher Education. JISC CETIS, 2013. Available: https://publications.cetis.org.uk/wp
  - https://publications.cetis.org.uk/wp-content/uploads/2013/03/MOOCs-and-Open-Education.pdf . publications.cetis.org.uk
- 5. K. F. Hew, "Understanding student engagement in large-scale open online courses: A machine learning facilitated analysis of student's reflections in 18 highly rated MOOCs," International Review of Research in Open and Distributed Learning, vol. 19, no. 3, pp. 69–93, 2018. Available: https://files.eric.ed.gov/fulltext/EJ1185116.pdf . ERIC
- 6. H. Khalil and M. Ebner, "MOOCs completion rates and possible methods to improve retention A literature review," in Proc. EdMedia: World Conf. on Educational Media and Technology, 2014, pp. 1305–1313. Available: https://files.eric.ed.gov/fulltext/ED547237.pdf . ERIC
- 7. G. Veletsianos and P. Shepherdson, "A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015," International Review of Research in Open and Distributed Learning, vol. 17, no. 2, pp. 198–221, 2016. Available:
  - https://www.irrodl.org/index.php/irrodl/article/view/2448/3 655 . irrodl.org
- 8. S. Haggard, The Maturing of the MOOC: Literature Review of Massive Open Online Courses and Other Forms of Online Distance Learning. London, UK: Dept. for Business, Innovation & Skills, 2013. Available: https://www.oerknowledgecloud.org/record1159
  The OER Knowledge Cloud
- C. Alario-Hoyos, M. Pérez-Sanagustín, C. Delgado-Kloos, and P. J. Muñoz-Merino, "Learning-by-doing in MOOCs through hands-on activities," Journal of Universal Computer Science, vol. 24, no. 8, pp. 1015–1033, 2018. Available:
  - https://pure.royalholloway.ac.uk/files/31289182/jucs\_24\_0 8 1015 1033 hoyos.pdf . Royal Holloway Research Portal
- 10. D. Cormier and G. Siemens, "Through the open door: Open courses as research, learning, and engagement," EDUCAUSE Review, vol. 45, no. 4, pp. 30–39, 2010. Available: https://er.educause.edu/articles/2010/8/through-the-open-door-open-courses-as-research-learning-and-engagement.ejmste.com
- S. Hrastinski, "Asynchronous and synchronous e-learning," EDUCAUSE Quarterly, no. 4, pp. 51–55, 2008. Available: https://er.educause.edu/articles/2008/11/asynchronous-and-synchronous-elearning. EDUCAUSE Review
- 12. R. Benson and P. Palaskas, "Introducing a new learning

management system: Lessons from an Australian university," Australasian Journal of Educational Technology, vol. 22, no. 4, pp. 455–473, 2006. Available: https://ajet.org.au/index.php/AJET/article/view/1285/0 . ajet.org.au

13. N. Emelyanova and E. Voronina, "Introducing a learning management system at a Russian university: Students' and teachers' perceptions," International Review of Research in Open and Distributed Learning, vol. 15, no. 1, pp. 272–289, 2014.

Available:

https://www.irrodl.org/index.php/irrodl/article/view/1701/2 801 . irrodl.org

- 14. N. Fathema, D. M. Shannon, and M. E. Ross, "Expanding the Technology Acceptance Model (TAM) to examine faculty use of Learning Management Systems (LMSs) in higher education institutions," Journal of Online Learning and Teaching, vol. 11, no. 2, pp. 210–233, 2015. Available: http://jolt.merlot.org/Vol11no2/Fathema\_0615.pdf. JOLT
- B. Bervell and I. N. Umar, "A decade of LMS acceptance and adoption research in Sub-Saharan African higher education: A systematic review," Eurasia Journal of Mathematics, Science and Technology Education, vol. 13, no.11,pp.8039–8054,2017.
  - Available:https://www.ejmste.com/article/a-decade-of-lms-acceptance-and-adoption-research-in-sub-sahara-african-higher-education-a-systematic-5115.