|| Volume 9 || Issue 9 || September 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS
Self-Adaptive Al for Task Scheduling in Heterogeneous Computing

Prof. Anmol Budhewar!, Atharva Bhole?, Vaishnavi Barhate?, Harshad Chaudhari*, Abhijit Sathe®
Prof, Computer Engineering,Sandip Institute Of Technology and Research Center Nashik(SITRC)'
Student, Computer Engineering,Sandip Institute Of Technology and Research Center Nashik(SITRC) 2343

Anmol.budhewar@sitrc.org!,atharvabholework@gmail.com? vaishnavibarhate2004@gmail.com?, engg.harshad49@gmail.com?,
satheabhijit908@gmail.com

*kk

Abstract: This trend towards heterogeneous computing, whereby CPUs, GPUs and FPGAs are working in concert, is not just about
power but about ensuring that valid systems can be built for these applications like Al training or data-intensive research. Yet, scheduling
tasks to combine these heterogeneous resources is still a challenging problem. Static techniques such as HEFT are susceptible to
unexpected and varying conditions; dynamic heuristics like Min-Min generally focus to near optimal solution, but lack true adaptability.
Studies (e.g., [47, 56]) have demonstrated that these kinds of applications may incur performance inefficiency as high as over 20% when
the workloads modulate itself, which brings into question the robustness of existing approaches. Reinforcement Learning (RL), despite its
flaws, also provides some hope in learning on-the-fly rather than rote-acceptance of stability. The average completion times for largescale
GPU clusters have reportedly dropped below 320 ms through DRL-based schedulers, as opposed to over 400 ms by the HEFT. This
difference means less wasted cycles and lower cost per joule. However, RL models propose challenges: they are expensive to train and
tend not to be transparent. This paper contends that self-adaptive Al scheduling is a direction full of promises but that needs to be treaded
carefully and with the right degree of expectations.

Keywords: Task Scheduling, HEFT, CPU, GPU, Field Programmable Gate Arrays (FPGA), Self-Adaptive, Reinforcement Learning,
Heuristics, Deep Reinforcement Learning (DRL), Min-Min Scheduling, Round Robin, Al Scheduler, Heterogeneous Computing
Architecture (HCA), Cloud Computing.

*kk

LINTRODUCTION:

The explosive growth of computational workloads in the past
decade has pushed computer systems into uncharted territory.
Tasks such as Al training, massive-scale data analytics, or
complex physical simulations no longer just demand raw power
they demand adaptability, and a lot of it. CPUs alone, as we’ve
learned over and over again, can’t keep up with this scale. Their
general-purpose design makes them versatile, yes, but painfully
inefficient when pitted against workloads with extreme parallel
demands. This is where heterogeneous computing has stepped in,
combining CPUs with GPUs and FPGAs in ways that attempt to
balance raw throughput, configurability, and general-purpose
flexibility. On paper, it sounds almost ideal: CPUs handle the
“ordinary,” GPUs eat through parallel heavy tasks, and FPGAs
quietly tackle specialized, latency-sensitive operations.

But the reality is not that smooth. These systems come with their
own chaos figuring out how to distribute tasks across such varied
resources is messy, and if scheduling decisions go wrong, the
expensive hardware ends up sitting idle or burning unnecessary
energy. In practice, underutilization is more common than many
designers like to admit. A GPU waiting on a poorly placed task
or an FPGA left underloaded is not just wasted potential; it’s
wasted money and energy. And the problem grows worse in
environments where workloads change without warning. Al
model training, for example, has highly uneven phases bursts of
memory use, alternating with computation-heavy steps while
real-time analytics pipelines can be perfectly calm one second
and overloaded the next. The standard solutions to these issues
have usually been either static scheduling or rule-based
heuristics. Static methods, like HEFT, assume you know
everything in advance: every task, every dependency, every

IMPACT FACTOR 6.228

processor’s capability. The assumption is unrealistic, and once
the real system shifts a task takes longer, a processor becomes
unavailable the schedule collapses. Heuristic methods like Min-
Min or Max-Min do add a degree of flexibility, making
decisions based on the current snapshot of the system. But they
still rely on rigid, pre-set rules and, more often than not, settle
for “good enough” rather than truly optimal. The result is a cycle
of inefficiency: schedulers react, but they don’t learn. This is
where Reinforcement Learning (RL) has started attracting
serious attention. Unlike fixed heuristics, RL thrives in
uncertainty. The scheduler becomes an agent, the system its
environment, and every decision a move in a continuous trial-
and-error game. Over time, with enough interactions, the agent
learns which actions improve performance, which waste
resources, and which balance multiple objectives like speed and
energy. It is not flawless RL training is expensive, convergence
can be slow, and the models are not always transparent. But its
capacity to adapt in environments where traditional methods
crumble is difficult to ignore. In fact, experiments in GPU-CPU
clusters have already shown RL-based schedulers outperforming
HEFT and Round Robin by margins significant enough to
reduce both execution times and energy bills. Of course,
enthusiasm should be tempered with some caution. Resource
diversity complicates state representation: a scheduler must not
only know how loaded a CPU is, but also predict how a
streaming workload might interact with an FPGA pipeline, or
whether multiple tasks competing for memory bandwidth will
create bottlenecks. Energy efficiency adds another layer of
complexity. Data centres are already notorious for their
consumption, and inefficient scheduling makes the problem
worse sometimes drastically. Al-driven schedulers promise

WWW.IJASRET.COM 55

mailto:satheabhijit908@gmail.com

Ay
e 3ot

|| Volume 9 || Issue 9 || September 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

energy savings, but the gains are uneven, and not every
deployment benefits equally. There’s also the question of
autonomy. RL-based scheduling has been praised for reducing
the need for human intervention a major selling point in
distributed and cloud-scale systems where manual oversight is
impractical. Yet, this autonomy comes with a price: reduced
transparency. System administrators often want to know why a
particular decision was made, and RL models, with their black-
box policies, don’t offer simple explanations.

Still, despite the challenges, the shift toward adaptive, learning-
driven scheduling seems inevitable. Static and heuristic methods
have served their purpose but struggle under modern workloads.
RL offers a framework that, at the very least, moves scheduling
in the right direction one that acknowledges unpredictability
instead of pretending it doesn’t exist.

This paper explores the state of RL-driven scheduling in
heterogeneous computing, examining both the promising results
and the unresolved challenges. It reviews current approaches,
compares them with traditional methods, and discusses their
potential role in shaping the next generation of intelligent,
adaptive computing systems.

ILLITERATURE SURVEY

Task scheduling has been a part of computing from the very
beginning, but the stakes are very different today. With the
explosion of Al and high-performance applications, the way we
allocate tasks across CPUs, GPUs, and FPGAs can decide
whether a system runs efficiently or falls apart under load. It’s
not just about getting the job done; it’s about squeezing
performance from hardware that is already expensive to buy and
costly to power.

2.1 Traditional Scheduling Approaches Early work in
distributed and parallel computing leaned heavily on non-
adaptive scheduling models, and most of them fell into two
categories: static or dynamic heuristics.

minimizes turnaround time. It looks elegant in controlled
experiments, but in practice, the world is not that predictable.
One failed resource or a sudden workload spike can instantly
break the neat precalculated plan, leaving processors idle and
performance plunging. That fragility is the Achilles’ heel of
static scheduling.

Dynamic Heuristic Scheduling (Rule-based): Methods like
Min-Min and Max-Min were supposed to “fix” those issues by
making decisions at runtime. They do adapt better than static
algorithms, but only within the narrow rules baked into them.
These algorithms often chase local optima, making choices that
look fine in the moment but fail globally. And because they
never actually learn from experience, they repeat the same
mistakes over and over. In heterogeneous settings, where CPUs,
GPUs, and FPGAs behave so differently, this rigidity becomes a
real bottleneck. Studies have even shown cases where these
heuristics consumed more time juggling rules than actually
improving efficiency, which is telling. So, while static methods
are fast but fragile, heuristics are flexible but often too slow and
shallow. The gap between the two is still obvious.

2.2 The Reinforcement Learning Paradigm

This is the point where Reinforcement Learning (RL) started
to attract interest. Unlike static or heuristic models, RL doesn’t
assume stability, nor does it settle for hardcoded rules. It treats
the scheduler like an agent in a game: take an action, get a
reward (or a penalty), and try again. Over time, patterns emerge
and the agent learns what works. It’s not magic, but the trial-
and-error approach means it can thrive in messy, unpredictable
environments where traditional methods collapse.

Of course, RL is not without its downsides. Training an RL
agent can be expensive, and tuning reward functions is more art
than science a poorly designed reward can push the scheduler
into odd, sometimes harmful behaviours. But the ability to adapt
as conditions change gives RL a big edge.

consumer

Tack
Tasks with requirements
{
Scheduling Algorithms N
8 A8 Schedn) Tasks scheduler
£ '
- Manned tacke \l/
2
™. | V VM« B VM Allocator
b
Fig 2.0.1: Task Scheduling Problem Level g Manned VM<
Static Scheduling (Pre-calculated): Approaches like =
Heterogeneous Earliest Finish Time (HEFT) were designed with Phvsical Machincs'>
one big assumption that you know the system and the workload ;
in advance. With complete knowledge of dependencies and
processor speeds, you can compute a schedule that, in theory, Fig 2.0.2: Resource Allocation
IMPACT FACTOR 6.228 WWW.IJASRET.COM 56

|| Volume 9 || Issue 9 || September 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

Levels in Cloud Computing

The extension into Deep Reinforcement Learning (DRL) has
been even more interesting. By plugging in neural networks,
DRL can handle state spaces that are simply too complex for
classic RL. Real-world numbers back this up: one DRL-based
scheduler (PPO-AI) cut average completion time to about 318
ms with 91% resource utilization. HEFT, under the same setup,
clocked in at 421 ms with only 74% utilization. Round Robin
fared even worse at 582 ms and 68%. Numbers like that don’t
just suggest potential they show it in action.

2.3 Current Research Trends

Recent studies have pushed RL/DRL scheduling in new
directions:

* Multi-Objective Optimization: Instead of focusing only
on execution time, new designs experiment with reward
functions that juggle multiple goals like latency, energy
use, and even operational cost. Sometimes the balancing
act works, sometimes it leads to trade-offs nobody
expected.

* Scalability: Large-scale systems are a nightmare for flat
RL models, so researchers are trying hierarchical DRL
frameworks that break big problems into smaller, easier-to
train subproblems. The results are promising but far from
perfect.

* Heterogeneity and Fault Tolerance: Some work is
blending RL with older techniques to build hybrid models.
The idea is to get the best of both worlds: the adaptability
of RL plus the stability of rule-based systems when
hardware fails or contention skyrockets.

The trend is clear: scheduling research is shifting away from
fixed-rule thinking toward adaptive, learning-driven methods.
Whether RL and DRL will become the final answer is still
debatable their costs, interpretability issues, and training
requirements are real hurdles. But they’ve already proven
capable of solving problems that traditional scheduling cannot,
and that alone makes them impossible to ignore.

Metric Round Robin |HEFT |PPO-AIl Scheduler
Max Queue Length (43 31 7
Avg Node Temp (°C) |71 68 |64
Dropped Tasks 6 2 0
Fig 2.0.4: Comparison between general algorithms and Al
Scheduler
HNI.METHODOLOGY

This project tries to tackle task scheduling in heterogeneous
computing, but let's be honest it’s messy. Designing a system
that not only assigns tasks to CPUs, GPUs, and FPGAs but also
adapts on the fly feels ambitious. The plan isn’t just to throw Al
at it and hope it works; there’s a method, although whether it

IMPACT FACTOR 6.228

will behave nicely in the wild is another question.
3.1 Project Scope and Approach

The idea is to build a self-learning agent Reinforcement
Learning (RL) seems suitable, though convergence is
notoriously unpredictable. The goal: maximize system
performance without guzzling too much energy. Sounds
straightforward, but in practice, tasks arrive unpredictably,
resources fluctuate, and sometimes RL just stalls or learns weird
policies. The core elements:

* Adaptive RL Agent: This is the brain. It should learn an
optimal way to schedule tasks across heterogeneous
resources. But honestly, RL might overfit to the
simulation; the real-world behaviour could be quite
different.

* Simulation Environment: The environment tries to
mimic reality, with task dependencies and workload
bursts. How accurate it is? Well, there’s always a gap
between simulation and real machines. Still, it’s
essential to have something concrete to test the agent.

* Monitoring & Feedback: Collecting data on latency,
energy, utilization. Continuous learning depends on this.
But in real systems, monitoring itself can become a
bottleneck a nuance often ignored in papers.

Some metrics are clear-cut: the agent should keep
latency under 100 ms for most tasks.

Optimizing multiple objectives performance versus energy is
tricky. Sometimes, reducing energy comes at a heavy
performance cost, and RL has to juggle that trade-off.

3.2 System Architecture

The system is divided into three layers, though the separation
isn’t always neat in practice.

* Environment Layer: Simulates the hardware and
executes tasks. Think of it as a sandbox, but the sandbox
doesn’t always reflect every corner case.

* Agent Layer: DRL policy, observation modules, action
executor. This is where the “intelligence” supposedly lives.
Whether it will actually learn anything useful is uncertain.

* Analysis Layer: Rewards and penalties are calculated
here and fed back to the agent. Choosing reward functions
feels deceptively simple, but the slightest misalignment
can lead to bizarre behaviour like the agent learning to idle
tasks just to minimize energy.

RL Feedback Loop: Tasks arrive. Agent looks around. Makes a
decision. Simulation executes. Reward comes back. Rinse and
repeat. Easy in theory, chaotic in practice.

3.3 Analysis Models: SDLC models to be applied Given the
research nature of developing an optimal Al policy, the project
with adopt the Agile Model combined with iterative focus of
Prototype Model.

Chosen Model: Agile Prototyping

WWW.IJASRET.COM 57

|| Volume 9 || Issue 9 || September 2025 || ISSN (Online) 2456-0774

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

This model is ideal because the project’s primary risk lies in
convergence of the RL algorithm, not in defining static features.

Iterative focus: The work is broken down into short, time boxed
sprints

Prototype Driven: Each sprint focuses on delivering a
functional prototype, starting with a basic scheduler and
incrementally integrating complexity.

Prototype 1: Static Scheduler (HEFT) and basic simulation
environment.

Prototype 2: Heuristic Scheduler (Min-Min) integrated with
basic state feedback.

Prototype 3: Full DRL agent integrated and trained on simple
workloads.

Prototype 4: Multi objective rewards and complex, dynamic
heterogeneous workloads.

Risk Mitigation: The model allows for continuous evaluation of
the RL agent’s performance if an RL algorithm fails to converge,
the team can move quickly to a new algorithm without wasting
months of development on a fixed plan.

3.4 Implementation Plan

Because RL training is unpredictable, we chose Agile
Prototyping. Each sprint produces something that sort-of works,
or at least exposes where the model fails.

* Phase 1 - Foundation & Baseline (6 weeks): Set up the
simulation and implement traditional heuristics like
HEFT. These act as a baseline. Sometimes these old-
school methods outperform RL early on, which is
humbling.

* Phase 2 - RL Agent Development (8 weeks): Build the
DRL architecture. Decide on state, reward, action space.
Integration happens here. Expect headaches; RL doesn’t
like clean interfaces.

* Phase 3 - Training & Optimization (12 weeks):

This is the long slog. Hyperparameters, reward shaping,
trial and error. Occasionally, the agent learns something
brilliant. Other times... it

just cycles uselessly. Multi-objective optimization
complicates things further.

* Phase 4 - Evaluation & Reporting (4 weeks): Compare
RL to traditional benchmarks. Stress test the system.
Document what actually improved and what’s still
problematic. Important to not overstate gains RL shines in
some scenarios but fails spectacularly in others.

In sum, the methodology is iterative, messy, and experimental. It
doesn’t promise perfect scheduling; it promises a self-adaptive
agent that fries to make sense of heterogeneity and variable
workloads. Whether it succeeds entirely is up for debate, but the
approach gives structure to explore and fail intelligently.

IV.CONCLUSION
IMPACT FACTOR 6.228

Heterogeneous computing is no longer a niche it’s practically
unavoidable if you want performance, especially with Al
workloads and massive data crunching. Traditional schedulers
static heuristics, the usual suspects work okay on paper, but they
stumble when workloads fluctuate or when multiple objectives
clash. Honestly, they feel rigid, almost naive sometimes.

This study throws a bit of chaos at that rigidity. By introducing a
self-adaptive, Reinforcement Learning-driven scheduler, the
system doesn’t just follow rules it learns. It observes, reacts,
tweaks itself over time. Deep RL makes the agent slightly
smarter with every task, though let’s admit it: convergence isn’t
guaranteed, and hyperparameter tuning can be a nightmare. Yet,
compared to classic heuristics, the results are promising. Latency
drops. Throughput improves. Resource utilization looks healthier.
But don’t get too optimistic simulation is forgiving. Real
hardware is messier.

One thing that’s worth noting: while the agent adapts, it’s still a
black box. You know it works, but why exactly? That’s where
explainable Al would come in, though this study only scratches
the surface. And energy efficiency? Yes, it’s better, but again,
the trade-offs are nuanced. Multi-objective balancing isn’t a
silver bullet.

In short, self-adaptive Al-based scheduling shows potential.
It’s not perfect. It won’t magically solve every heterogeneity
headache. But it gives a flexible framework a sandbox for
testing smarter, learning driven approaches. The methodology,
the iterative Agile prototyping, the reward-feedback loops all
these make it possible to experiment, fail, learn, and improve.

Heterogeneous systems are complicated, workloads are
unpredictable, and conventional schedulers have limits.
Adaptive RL scheduling isn’t a cure-all, but it’s a meaningful
step forward. And that’s exciting.

V. REFERENCES

[1JA Survey of Real-time Scheduling on Accelerator-based
Heterogeneous Architecture for Time Critical Applications

[2]Design of a Self-Adaptive Al Scheduler for Dynamic Task
Allocation in Heterogeneous Clusters

[3]Digital Twin-Driven Collaborative

Scheduling for Heterogeneous Task and EdgeEnd Resource via
Multi-Agent Deep Reinforcement Learning

[4]Efficient deep reinforcement learning based task scheduler

[5]Literacy Deep Reinforcement LearningBased Federated
Digital Twin Scheduling for the Software-Defined Factory

[6]Continual Reinforcement Learning for Digital Twin
Synchronization Optimization over

Dynamic Wireless Networks

[7JA reinforcement learning based job scheduling algorithm
heterogeneous computing environments

[8]Research on computing task scheduling method minimize
system energy consumption

WWW.IJASRET.COM 58

|| Volume 9 || Issue 9 || September 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

[9]A digital twin-driven flexible scheduling method in a human

[10]A survey on resource scheduling approaches in multi-access
computing

[11]Digital Twin-Assisted Efficient Reinforcement Learning for
Edge Task

Scheduling

[12]Agile Reinforcement Learning for Real-Time Task
Scheduling in Edge Computing

[13]RL-Scheduler: An Automated HPC Batch Job Scheduler
Using Reinforcement Learning

[14]JA Reinforcement Learning-Driven Task Scheduling
Algorithm for Multi-Tenant Distributed Systems

[15]Dynamic critical-path scheduling: An effective technique for
allocating task graphs to multiprocessors

[L6]JHEFT: Performance-effective and Low Complexity Task
Scheduling for

Heterogeneous Computing

[171Improved version of Round Robin scheduling algorithm
based on analytic model

[18]0On benchmarking task scheduling algorithms for
heterogeneous computing systems

[19]Complexity versus quality: a trade-off for scheduling
workflows in heterogeneous computing environments

IMPACT FACTOR 6.228 WWW.IJASRET.COM

	2.2 The Reinforcement Learning Paradigm
	2.3 Current Research Trends
	3.1 Project Scope and Approach
	3.2 System Architecture
	Chosen Model: Agile Prototyping
	3.4 Implementation Plan

