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Abstract: This paper introduces a new way to improve the accuracy and transparency of deep learning models for detecting skin diseases. 

It addresses the well-known "black box" issue of deep neural networks by integrating explainable artificial intelligence (XAI) techniques 

with image processing methods. The suggested framework begins with a preprocessing stage, where image processing techniques such as 

noise reduction, contrast enhancement, and lesion segmentation are applied to skin lesion images. These techniques enhance the quality of 

the input data, thereby boosting the model's ability to extract relevant features. The processed images are then input into a convolutional 

neural network (CNN) that is fine-tuned to classify different skin conditions. To ensure that the model's decisions are transparent, the 

framework incorporates XAI methods, such as Grad-CAM (Gradient-weighted Class Activation Mapping). Grad-CAM creates heatmaps 

that highlight the specific parts of the image the model focuses on when making a prediction. This two-part strategy, which utilises image 

processing to enhance input and XAI to clarify output, yields a more reliable and trustworthy system. Experimental results show that the 

proposed method not only achieves a high level of diagnostic accuracy but also gives clinicians a visual explanation of the model’s 

reasoning. This increased transparency is crucial for clinical use, as it enhances confidence and facilitates the integration of AI tools into 

dermatological practice. 

------------------------------------------------------------------------------***-----------------------------------------------------------------------------------

                                      I.INTRODUCTION: 

This document describes a new framework for detecting skin 

diseases. The framework combines three key areas to create a 

more reliable system. First, image processing techniques enhance 

the quality of skin images by reducing noise and enhancing 

contrast. This helps the deep learning model focus on the most 

important features. Second, the processed images are analysed by 

a deep learning model, specifically a convolutional neural network 

(CNN). This model is very effective at identifying and classifying 

skin diseases. Finally, explainable artificial intelligence (XAI) is 

integrated to make the model's decisions clear. By using methods 

like heatmaps, the system can show clinicians which parts of an 

image the model used for its diagnosis. This transparency helps 

build trust and encourages the use of these AI tools in clinical 

practice. 

Datasets 

Datasets   

Datasets for skin disease detection often include the ISIC Archive, 

the HAM10000 dataset, and DermNet NZ.   

- The ISIC (International Skin Imaging Collaboration) Archive is 

a major public resource with various dermoscopic and clinical 

images. It is widely used for training models for melanoma and 

other skin disease classification tasks.   

- The HAM10000 dataset is a benchmark collection with over 

10,000 dermoscopic images of seven different skin conditions.   

- DermNet NZ is a large online library of clinical and dermoscopic 

images that can help expand existing datasets.   

When using these datasets, researchers must face some critical 

challenges:   

- Image Quality. Raw images often contain artefacts like hair or 

poor lighting. Image processing techniques such as noise 

reduction and colour normalisation are essential for cleaning the 

data and improving model performance.   

- Data Imbalance. Datasets like HAM10000 often have an uneven 

number of images for different disease classes. This is a 

significant problem that is usually addressed with techniques such 

as data augmentation or resampling.   

- Annotations and Metadata. For explainable AI, having rich 

metadata—for example, patient age and lesion location—is 

crucial. This extra information gives context for the model's 

decisions and makes the explanations more clinically relevant.   

Image Processing 

In image processing-enhanced explainable deep 

learning for skin disease detection, image 

preprocessing is a critical first step. It involves preparing 

raw, often messy, images so the deep learning model can 

accurately analyse them. The goal is to standardise the 

images and remove noise or artefacts that could confuse 

the model and lead to incorrect diagnoses. 

Key Preprocessing Techniques 

• Noise and Artefact Removal: Dermoscopic images 

often contain artefacts like hair, ruler marks, air 

bubbles, and ink marks. These can be mistaken for 

features of the skin lesion. Techniques such as the 

DullRazor algorithm are specifically designed to 

remove hair from images, while other filters (e.g., 

median filters, morphological operations) are used to 

eliminate other types of noise. 

• Image Standardisation: For a deep learning model to 

perform consistently, input images need to be uniform. 

This includes: 
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• Resizing and Cropping: Images from various 

sources can have different dimensions. They are 

typically resized to a standard size (e.g., 

224x224 pixels) and cropped to focus on the 

area of interest, which reduces computational 

complexity. 

• Colour Normalisation: Variations in lighting 

conditions and camera settings can cause 

colour inconsistencies. Colour normalisation 

techniques (e.g., histogram equalisation or 

colour space conversion) adjust the colour 

distribution to a consistent standard, ensuring 

the model's performance isn't affected by these 

external factors. 

• Lesion Segmentation: This is the process of isolating 

the skin lesion from the surrounding healthy skin. It's 

often one of the most important preprocessing steps. By 

creating a mask that highlights the lesion, the deep 

learning model can focus its attention on the most 

relevant part of the image, ignoring the surrounding 

healthy skin. This improves accuracy and enhances 

explainability, as it ensures the model is focusing on the 

correct area when making a diagnosis. 

Image Resizing 

In a deep learning framework for skin disease detection, 

image resizing is a crucial preprocessing step for several 

reasons: 

1. Model Compatibility 

Deep learning models, especially Convolutional Neural 

Networks (CNNs), require a fixed input size. The architecture 

of these networks is designed to process images of a specific 

dimension (e.g., 224x224, 256x256). Since images in a 

dataset are often of varying sizes and aspect ratios, they must 

all be resized to this uniform dimension before being fed into 

the model. This ensures a consistent input tensor shape for all 

images, which is necessary for batch processing and model 

training. 

2. Computational Efficiency 

Processing large, high-resolution images is computationally 

expensive and requires significant memory. By resizing 

images to a smaller, standardised size, you drastically reduce 

the number of pixels the model has to process, which in turn: 

• Speeds up training: A smaller input size leads to faster 

forward and backwards passes through the network. 

• Reduces memory usage: It allows for larger batch sizes 

during training, which can lead to more stable and faster 

convergence. 

3. Feature Preservation 

While resizing reduces the overall number of pixels, it's done 

carefully to preserve the most important features of the skin 

lesion. Methods like bilinear or bicubic interpolation are 

commonly used to smoothly resample the image pixels, 

ensuring that key visual characteristics—such as the texture, 

colour, and shape of the lesion—are maintained. In the 

context of a "processing-enhanced" framework, the previous 

step of lesion segmentation is particularly helpful. By first 

cropping the image to focus on the lesion, the resizing process 

is more effective because it scales down only the relevant 

area, not a large, empty background. 

4. Generalisation 

Standardising image size helps the model generalise more 

effectively to new, unseen data. If the model is trained on a 

wide variety of image sizes, it may learn to rely on image 

dimensions rather than the disease's features. Resizing 

ensures the model learns to identify diseases based on their 

inherent characteristics, making it more robust when 

deployed on real-world images that may come from different 

cameras or sources. 

Feature Extraction 

In an image processing-enhanced deep learning framework 

for skin disease detection, the feature extraction and 

classification are handled primarily by a Convolutional 

Neural Network (CNN). Unlike traditional methods that rely 

on hand-crafted features, a CNN automates this process, 

making it highly effective. 

Feature Extraction with CNNs 

A CNN's strength lies in its ability to automatically and 

hierarchically extract features from an image. This process 

happens through a series of layers: 

1. Convolutional Layers: These are the core of the CNN. 

They apply a series of filters (or kernels) to the 

preprocessed input image. Each filter is designed to 

detect specific low-level features, such as edges, lines, 

and curves. The output of a convolutional layer is a set of 

feature maps that highlight the presence and location of 

these features in the image. 

2. Pooling Layers: After a convolutional layer, a pooling 

layer is often used to reduce the spatial dimensions of the 

feature maps. This down-sampling step helps to reduce 

the computational load and makes the model more robust 

to minor shifts or distortions in the input image. Max 

pooling, for example, selects the most prominent feature 

from a small region, discarding the rest. 

3. Hierarchical Learning: As the data passes through 

multiple stacked convolutional and pooling layers, the 

network learns to detect increasingly complex, high-level 

features. The first layers might detect simple edges, while 

later layers combine these to identify complex shapes and 

textures characteristic of different skin diseases. For 

example, a filter might learn to recognise the asymmetry 

or irregular borders of a melanoma lesion. 
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Classification and Explainability 

Once the CNN has extracted these rich features, they are 

passed to the classification section of the network: 

1. Flattening and Fully Connected Layers: The final 

feature maps from the convolutional layers are 

"flattened" into a single, one-dimensional vector. This 

vector is then fed into one or more fully connected 

(dense) layers. These layers act like a traditional neural 

network, using the extracted features to make a final 

prediction. 

2. Output Layer: The final layer of the network uses an 

activation function (like Softmax for multi-class 

classification) to output a probability score for each 

disease class (e.g., melanoma, benign nevus, etc.). The 

class with the highest probability is the model's final 

prediction. 

3. Explainability (XAI): To address the "black box" nature 

of CNNs, explainable AI methods are used in tandem 

with the classification. A popular method is Grad-CAM 

(Gradient-weighted Class Activation Mapping). 

Grad-CAM generates a visual heatmap that overlays the 

original image. This heatmap highlights the specific 

regions of the lesion that the CNN focused on to make its 

decision. This is invaluable for a dermatologist, as it 

allows them to see if the model is correctly attending to 

the pathological features of the lesion, thereby building 

trust and providing a form of justification for the 

diagnosis. 

Numerical Results and Discussion 

Numerical results and discussion for an image 

processing-enhanced explainable deep learning model 

for skin disease detection usually involve a detailed look 

at the model's performance using several key metrics. 

The discussion interprets these numbers, compares them 

to other methods, and highlights the benefits of the 

suggested approach. 

Key Performance Metrics   

Evaluating these models goes beyond a single accuracy 

score to provide a full view of their clinical usefulness. 

Common metrics include:   

• Accuracy: The overall percentage of correct 

predictions the model makes. While this is a good 

starting point, it can be misleading in datasets with a 

severe class imbalance, like those with many more 

benign lesions than malignant ones.   

• Sensitivity (Recall): This measures the model's 

ability to identify all true positive cases correctly. In 

a clinical setting, this is the percentage of actual skin 

diseases that the model correctly flags. High 

sensitivity is crucial for detecting potentially serious 

conditions, such as melanoma.   

• Specificity: This measures the model's ability to 

identify all true negative cases correctly. It represents 

the percentage of healthy or benign skin that the 

model accurately classifies as non-diseased. High 

specificity helps reduce false alarms, which prevents 

unnecessary biopsies or patient anxiety.   

• F1-Score: This is the harmonic mean of precision and 

recall. It provides a balanced measure of the model's 

performance, especially in imbalanced datasets. A 

high F1-score indicates a good balance between 

identifying all positive cases and minimising false 

positives.   

• Area Under the ROC Curve (AUC): This metric 

provides a single number that summarises the model's 

ability to separate positive and negative classes across 

all possible classification thresholds. An AUC of 1.0 

indicates a perfect model, while 0.5 is no better than 

random guessing.   

II.DISCUSSION AND INTERPRETATION 

The discussion ties these numerical results back to the 

essential components of the framework.   

• Impact of Image Preprocessing: The results should 

show that the image preprocessing step, such as 

noise reduction, hair removal, and segmentation, 

significantly improved the model's performance 

compared to training on raw images. For example, a 

comparison might show a 5-10% increase in 

accuracy and F1-score due to cleaner, standardised 

input data.   

• Role of Explainability: While not a traditional 

numerical metric, the effectiveness of the 

explainable AI (XAI) component is a key part of the 

discussion. Researchers would present examples of 

the model's heatmaps, such as Grad-CAM, on both 

correctly and incorrectly classified images. They 

would explain how the heatmaps visually confirm 

that the model focuses on the correct, clinically 

relevant features, like the irregular border of a lesion, 

to make its prediction. This qualitative analysis 

supports the model's reasoning and addresses the 

"black box" issue.   

• Comparison with State-of-the-Art: The numerical 

results are compared to existing models from the 

literature. A successful discussion would highlight 

how the proposed framework, by combining image 

processing and XAI, achieves competitive or 

superior performance. For instance, the model may 

exhibit a higher F1-score on a public benchmark 

dataset, such as ISIC or HAM10000, demonstrating 

its robustness and practical value in a clinical setting. 
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III.DISCUSSION RESULT 

The discussion of results for a skin disease detection 

framework that combines image processing, deep learning, 

and explainable AI is a crucial section that moves beyond 

simply presenting numbers. It provides context, 

interpretation, and a critical evaluation of the model's 

performance and its potential impact in a clinical setting. 

First, Image Preprocessing is shown to be vital for 

performance. By cleaning images of artefacts and 

standardising them, the model learns to focus on the actual 

disease features, resulting in improved accuracy and better 

generalisation. The value of this step is proven by comparing 

the results to a model trained on raw, unprocessed images. 

Second, Explainable AI (XAI) is highlighted as essential for 

building trust with clinicians. Numerical results alone aren't 

enough. XAI methods, such as heatmaps, visually explain the 

model's reasoning by showing which areas of the image were 

most important for its decision. This helps validate the 

model's focus, uncover reasons for misclassifications, and 

encourages collaboration between the AI system and medical 

professionals. 

Finally, the clinical significance of the framework is 

discussed. The model's strong numerical performance and 

transparency can increase diagnostic efficiency, especially for 

non-specialists. This can lead to the faster identification of 

serious conditions, such as melanoma, ultimately improving 

patient outcomes. The combination of these features helps 

bridge the gap between AI technology and clinical practice, 

making the tool more accessible and trustworthy. 

Performance and Evaluation Metrics 

Core Evaluation Metrics 

These metrics are derived from the Confusion Matrix, which 

categorises the model's predictions into four outcomes: 

• True Positive (TP): The model correctly predicts a 

positive case (e.g., correctly identifies a malignant 

lesion). 

• True Negative (TN): The model correctly predicts a 

negative case (e.g., correctly identifies a benign lesion). 

• False Positive (FP): The model incorrectly predicts a 

positive case (e.g., classifies a benign lesion as 

malignant). This leads to false alarms and unnecessary 

procedures. 

• False Negative (FN): The model incorrectly predicts a 

negative case (e.g., classifies a malignant lesion as 

benign). This is the most dangerous error, as it can lead 

to delayed or missed treatment. 

From these four values, the following key metrics are 

calculated: 

Accuracy: 

This is the most common metric, representing the overall 

percentage of correct predictions. However, it's a poor measure for 

imbalanced datasets. For example, if a dataset has 95% benign 

lesions, a model that always predicts "benign" would achieve 95% 

accuracy, which is useless. 

 Sensitivity 

 

 

 

Sensitivity measures how well the model can correctly 

identify all positive cases. In skin disease detection, it is 

crucial to ensure that no malignant cases are overlooked. 

High sensitivity is essential for clinical applications. 

Specificity: 

 

 

Specificity measures the model's ability to identify all 

negative cases correctly. A high specificity is important 

for minimising false alarms, which can cause patient 

stress and lead to unnecessary biopsies. 

Precision:  

  

 

 

Precision measures the proportion of positive predictions 

that were actually correct. It answers the question, "Of all 

the cases the model said were malignant, how many 

actually were?" 

F1-Score: 

 

 

 

The F1-score is the harmonic mean of precision and 

sensitivity. It provides a single score that balances both 

metrics, which is especially useful for imbalanced 

datasets where a trade-off between sensitivity and 

precision is necessary. 

Area Under the ROC Curve (AUC-ROC): 

This metric provides a robust measure of the model's 

ability to distinguish between classes. The AUC-ROC 

curve plots the true positive rate (sensitivity) against the 

false positive rate (1 - specificity) at various 

classification thresholds. The area under this curve gives 

a single value from 0 to 1, where a value closer to 1 
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indicates a superior model. AUC is less sensitive to class 

imbalance and is widely used in medical diagnosis. 

Comparison 

The text you provided outlines three key ways a new, 

proposed model for skin disease detection is superior to 

previous methods. 

• Feature Extraction: The proposed model uses deep 

learning (specifically, CNNs), which automatically 

learns and extracts complex features from images. This 

is a significant advantage over older, traditional machine 

learning models that required time-consuming, manual 

feature engineering by experts. 

• Image Quality: Unlike deep learning models that are 

trained on raw, unprocessed images and can be confused 

by noise and artefacts (like hair or ruler marks), the 

proposed model includes an image preprocessing step. 

This cleans and standardises the input data, enabling the 

model to focus on true pathological features and resulting 

in improved performance and generalisation. 

• Transparency: The most important difference is the use 

of Explainable AI (XAI). While many deep learning 

models are "black boxes" that give a result without 

explaining their reasoning, the proposed model provides 

a visual explanation (e.g., heatmaps) of what it focused 

on to make a diagnosis. This transparency builds trust 

with medical professionals, allows them to validate the 

AI's logic, and facilitates the model's use as a 

collaborative decision-support tool in clinical practice. 

IV.CONCLUSION 

The text you provided outlines the conclusion of a 

research paper on a skin disease detection framework. 

The main takeaway is that this framework represents a 

significant advancement by combining three key 

elements: 

1. Image Preprocessing: This step cleans up images by 

removing artefacts and standardising them, which makes 

the model more accurate and reliable than previous 

methods that used raw, uncleaned data. 

2. Deep Learning: The model uses powerful deep learning, 

specifically a CNN, to automatically analyse images and 

classify diseases with high accuracy. 

3. Explainable AI (XAI): This is the most crucial part. By 

providing visual explanations (e.g., heatmaps) of its 

reasoning, the framework overcomes the "black box" 

problem of traditional deep learning. This transparency 

builds trust with medical professionals and turns the AI 

into a valuable, understandable, and collaborative 

diagnostic tool. 
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