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Abstract: The exponential growth of the Internet of Things (IoT) has been phenomenal, changing the face of several sectors and making
formerly mundane tasks much easier. There is a critical need to ensure the safety of [oT networks due to the fact that the expansion of [oT
devices has created new entry points for cybercriminals. To protect the confidentiality and availability of IoT networks, intrusion
detection and classification systems are vital. Cyberattacks nowadays are very dynamic and complex, making it difficult for traditional
intrusion detection systems that rely on rules or signatures to stay up. Consequently, there has been a lot of focus on using machine
learning techniques for intrusion detection and classification in IoT networks recently. Intrusion detection systems can adapt and develop
with new threats by using machine learning algorithms to automatically discover patterns and correlations from enormous amounts of
data. The rapid expansion of [oT devices has increased security vulnerabilities, necessitating robust intrusion detection mechanisms. This
research proposes a hybrid approach combining XGBoost for feature selection and deep learning models (CNN, LSTM, and MLP) for
effective intrusion detection. We employ CNN for spatial feature extraction, LSTM for temporal pattern recognition, and MLP for
classification. By examining data from network traffic, these algorithms may identify unusual behavior and group it into distinct types of
attacks, safeguarding the system in real-time. Exploring and evaluating several machine-learning techniques for intrusion detection and
classification in IoT networks is the goal of this project. The goal is to find the best models for detecting and correctly classifying
intrusions in [oT settings. We will examine the efficacy of common machine learning methods including Decision Trees, Random Forest,
Support Vector Machines (SVM), Neural Networks, and Ensemble Techniques by making use of the extensively used UNSW-NB15
dataset (Moustafa & Slay, 2016), which is an exhaustive dataset for network intrusion detection. We hope to find out what works and
what doesn't by do an empirical evaluation of these algorithms using the UNSW-NB15 dataset. To evaluate how well the models, identify
and categorize network intrusions, performance measures including recall, accuracy, precision, and F1-score will be utilized. In order to
better protect IoT networks from cyber-attacks, this study will examine the possibility of using machine learning-based techniques.
Keywords: Internet of Things, Cyberattacks, XGBoost, CNN, LSTM, and MLP.
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LINTRODUCTION: Using classifications like "fuzzer," "analysis," "backdoor,"
"denial of service," "exploit," '"generic," "reconnaissance,"
"shellcode," and "worm," UNSW-NBI5 organizes network
traffic records based on the Internet of Things. He used the IXIA
Perfect Storm program from the Cyber Range Lab of the
Australian Cyber Security Center (ACCS) to construct raw
network packets from the UNSW-NB 15 dataset, which were
then mixed with real-world routine activity and modern threats. I
managed to catch a variety of motions. Internet of Things (IoT) -
The foundation makes the network. Figure 3.1 illustrates the
process of creating the UNSW-NBI15 testbed's configuration
records and functions.

Advanced machine learning algorithms and models provide
significant benefits for enhancing IoT network security. These
techniques analyze input features from network traffic, assisting
cybersecurity personnel in making critical threat detection
decisions. However, the complexity of these models often makes
them difficult for human analysts to interpret. As a result,
analysts may rely on traditional tools that, while more
explainable, may not be as effective for modern cybersecurity
challenges.

Understanding the internal workings of an ML-based intrusion

detection system (IDS) is often challenging, which can reduce
The developer pre-splits UNSW-NB15 into two sets,

UNSW_NBIS5_trainingset.csv and UNSW_NBI15_testing-set.csv,
so that the model may be trained and tested separately. Each
record in the test set—which has 82,332 records—includes a
target response, an attack, and the expected behavior related to
traffic. The training set contains 175,341 data. A total of 39
numerical characteristics make up the dataset. The UNSWNBI15
features.csv file lists the features along with their descriptions.
The experimental procedure will be enhanced by using a binary

trust in its predictions—even when performance metrics indicate
high accuracy. Without clear insights into the decision-making
process, cybersecurity experts may hesitate to rely fully on ML
models.

Explainable Al (XAI) provides a range of tools for interpreting
model behavior and assessing feature importance. By offering
transparent explanations of how ML models make decisions,
XAI enhances trust in their predictions, enabling cybersecurity
professionals to better understand classifier behavior and
confidently integrate ML-driven insights into their security
strategies.

categorization of aggressive and normal behavior as the goal
attribute. Within the data subset, Figure 2 displays the details and
score distribution of each assault class. The range from 0 (normal)
UNSW-NBI1S5 Dataset to 1 (aggressive) is rather broad. It is clear that the dataset
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contains balanced activity behavior binary response variables.
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Figure 1: IXIA Traffic Generator Overview
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Figure 2: Training Dataset Distribution and Counts
ILMODEL ARCHITECTURE CNN-LSTM-MLP MODEL:

The proposed hybrid model consists of three key deep learning
components: CNN, LSTM, and MLP. The CNN layer extracts
spatial patterns from network traffic data, enabling the model to
detect local correlations in input features. The LSTM layer
captures sequential dependencies, effectively recognizing
temporal attack patterns. Finally, the MLP layer acts as a fully
connected network for final classification, ensuring accurate
decision-making between regular and attack traffic.
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Figure 3: Proposed hybrid Machine Learning model
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The input layer consists of preprocessed network traffic features,
including attributes such as packet size, duration, protocol type,
and source/destination ports. These features are normalized to
ensure consistent data representation and stable model training.
Normalized feature values are typically in the range [0,1] to
prevent significant learning variations.

CNN Layer (ConvlD + Max Pooling)

The Convolutional Layer (ConvlD) applies multiple filters to
extract spatial relationships between network traffic features.
These filters help identify patterns such as frequent access to
specific ports or high packet rates in a given window.

The Max Pooling Layer then reduces the dimensionality of the
extracted features while retaining the most significant
information. This prevents overfitting and reduces computational
complexity.

Batch Normalization

Batch normalization is applied to stabilize training by
normalizing feature maps. This improves convergence speed and
prevents issues like vanishing or exploding gradients, typical in
deep networks.

The first LSTM layer (64 units) processes sequential network
traffic data to learn temporal dependencies. This is crucial for
detecting time-based attack behaviors such as distributed denial-
of-service (DDoS) attacks, which follow a specific request
pattern over time.

The second LSTM layer (32 units) further refines the learned
temporal patterns, making it easier for the model to generalize
across different attack types.

Fully Connected (MLP) Layers

The final layers of the model consist of fully connected dense
layers, which further process the extracted features for
classification.

Dense Layer (64 units) + Dropout: Helps reduce overfitting by
randomly deactivating a fraction of neurons during training.

Dense Layer (32 units): Further abstraction of high-level patterns
to optimize final classification.

Output Layer

The output layer consists of a single neuron with a sigmoid
activation function, which enables binary classification. The
output ranges between 0 and 1, where values close to 0 indicate
regular traffic and values near 1 suggest an attack.

Proposed Approach with Scikit-learn, XGBoost, and XAI
Libraries

There are three supervised ML binary classifiers that will be
trained using the UNSW-NBI15 training dataset: Decision Trees,
Neural Networks based on Multi-layer Perceptron, and XGBoost.
The dataset will first undergo data processing techniques such as
data cleaning, normalization, and transformation. An attack
behavior classification system or a normal behavior classification
system will serve as the target feature. Next, we'll put the trained
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model through its paces using the UNSW-NB15 testing dataset's
processed data. We will use the accuracy score to measure the
model's performance. Hyper parameters for models or classifiers
will not be used to fine-tune the process outlined above. The
XGBoost Classifier will make use of the XGBoost package,
while the Decision Trees Classifier and Multi-layer Perceptron
Classifier will be implemented using Scikit-Learn. Once the
classifiers have been trained and tested, the next step is to utilize
them to create visual representations of the classification and
prediction processes, as well as feature significance plots and
interpretable diagrams.

These visuals will be based on the learned classifiers that were
used to find patterns in the testing set of network data. In order to
improve the explainability of ML classifiers, the following
Python packages are examined:

1. ELIS is a visualization library that may be used to illustrate
and debug machine learning models' predictions.

2. Machine learning algorithm predictions may be shown with
the help of the LIME package, which stands for Local
Interpretable Model Agnostic Exploitations.

3. A game-theoretic method for elucidating ML model output
is SHAP (Shapley Additive exPlanations). The effect of
features on model output may be better understood with the
aid of SHAP.

III.LRESULT AND DISCUSSION

XGBoost Feature Importance Table: The feature importance
scores are determined by XGBoost, which ranks the input
features based on their contribution to the model's predictions.
These scores indicate how relevant each feature is in detecting
intrusions. Higher scores suggest more substantial contributions
to classification performance.

Validation Techniques

We applied various validation techniques and analyzed the
results to evaluate the reliability and robustness of our proposed
XGBoost + CNN-LSTM-MLP model.

K-Fold Cross-Validation (K=5): K-Fold Cross-Validation
divides the dataset into five subsets, training on four and testing
on one in rotation. The average accuracy and standard deviation
help assess the model's generalization ability.

Table 1: K-Fold Cross-Validation Results (K=5)

Fold Accuracy |Precision| Recall | F1-Score

(%0) (%0) (%0) (%)

1 25 91.8 90.6 912

2 93.1 922 90.9 25 B

3 93.8 92.5 Q1.3 91.9

4 94.2 93.0 1.5 923

5 924 91.5 90.2 90.8
Average 92.8 92.2 90.9 91.5

The model achieves consistent performance across different
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folds. A low standard deviation (+0.6%) confirms its stability.
Slight fluctuations indicate the dataset's complexity but within an
acceptable range.

Holdout Validation: In Holdout Validation, 80% of data is used
for training and 20% for testing. This ensures the evaluation of
unseen data.

Table 3.4: Holdout Validation (80% Training - 20% Testing)

Metric 'Value (%)
|Accuracy 93.75
Precision 92.50
Recall 91.20
IF1-Score 91.80

The model achieves 93.75% accuracy on unseen data, validating
its predictive capability. High precision (92.5%) ensures minimal
false positives (incorrect attack classifications). Recall (91.2%) is
balanced, confirming effective attack detection.

Confusion Matrix Analysis: The confusion matrix provides a
detailed breakdown of classification performance. Evaluates
True Positive, False Positive, True Negative, and False Negative
rates.

Table 3.5: Confusion Matrix Analysis

)Actual / Predicted Attack (1) Normal (0)
Attack (1) 912 (TP) 88 (FN)
Normal (0) 75 (FP) 925 (TN)

The key metrics computed from the confusion matrix highlight
the effectiveness of the proposed model. The precision of
92.50% indicates a high proportion of correctly identified attacks
among all predicted attacks, while the recall of 91.20% ensures
that most actual attacks are detected. The F1-Score, calculated as
91.80%, balances precision and recall, reflecting the overall
robustness of the model.

Additionally, the False Positive Rate (FPR) of 7.50% ensures
that regular traffic is rarely misclassified as an attack. In contrast,
the False Negative Rate (FNR) of 8.80% confirms that most
attacks are successfully identified. The high values of True
Positives (912) and True Negatives (925) further validate the
strong classification capability of the CNN-LSTM-MLP model.
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Figure 4: Graphical representation of the confusion matrix
Stratified Sampling:

Stratified sampling ensures an even class distribution in training
and testing, preventing bias. Without stratification, recall
dropped by 3% due to underrepresented attack classes. With
stratification, performance improved by ensuring all attack types
were well-represented.

XGBoost Feature Importance

Stratified Sampling:

Stratified sampling ensures an even class distribution in training
and testing, preventing bias. Without stratification, recall
dropped by 3% due to underrepresented attack classes. With
stratification, performance improved by ensuring all attack types

were well-represented.

XGBoost Feature Importance

The feature importance scores are determined by XGBoost,
which ranks the input features based on their contribution to the
model's predictions.

Table 3.6: XGBoost Feature Importance

Feature Importance Score
F1 0.12
IF2 0.09
IF3 0.08

Proposed Hybrid Model Performance
Table 7: Proposed Hybrid Model Performance
IMPACT FACTOR 6.228

I 500

- 400
- 300
-200

- 100

|| Volume 9 || Issue 7 || July 2025 || ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS
Confusion Matrix for Intrusion Detection Model

"

Metric Value
Accuracy 93.75%
Precision 92.50%
Recall 91.20%
F1-Score 91.80%
Proposed Model
94 00
92 OO I I I
Accuracy Recal Fl-

X-Axis: Metrics type
Y-Axis: Performance Level
Figure 5: Proposed Model Performance Metrics
Table 3: Comparison of Proposed Hybrid Model Performance

with existing models

Model Decision Treq Random SVM XGBoost Proposed
Forest Model
Accuracy 83.40% 85.50% 88.30% 90.40% 93.75%
Precision 82.10% 84.20% 87.10% 89.80% 92.50%
Recall 81.50% 83.50% 86.50% 89.00% 91.20%
F1-Score 81.80% 84.00% 86.90% 89.60% 91.80%

Proposed Model Performance Vs existing models
96.00%
94.00%
92.00%

90.00%
88.00%
86.00%
84.00%
82.00%
80.00%
78.00%

& nnos

Decision Tree Random Forest XGBoost Proposed Model

Metrics Tvne

Performance Level

W Accuracy W Precision ®Recall WF1-Score

Figure 6: Comparison of Proposed Model Performance with
existing models
The results indicate that our proposed hybrid model
outperforms traditional machine learning approaches like
Decision Tree, Random Forest, SVM, and standalone XGBoost.
Combining feature selection (XGBoost) and deep learning

(CNN-LSTM-MLP) enhances accuracy and robustness.
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Visualization Decision Tree Classifier

Using Scikit-learn's tree. Decision Tree Classifier (), a decision

tree classification model was built to distinguish between normal

and attack behavior based on the training set. The model achieved

an accuracy of 85% when evaluated on the testing set, as shown

in Figure 3.6.

Accuracy: 8,8510901614568184

Reporting for ['Decision Tree Classifer', 'Reglog']:
precision  recall fl-score support

0 0.69 .98 .81 56000

1 0.99 .79 0.88 119341

accuracy 0.85 175341
macro avg 0.84 0.88 0.84 175341
weighted avg 0.89 0.85 0.86 175341

The top 10 feature importance’s were visualized using both
Scikit-learn's  built-in  methods and ELIS’s Permutation
Importance toolkit. Feature importance is determined by
measuring the reduction in node impurity, weighted by the
likelihood of reaching each node. The visualization highlights the
most significant properties within the tree structure.

Feature Importances of Decision Tree Classifier

<t -
t_dst _src_Itm _
tpret -
soytes -
dbytes -
ct_srv_dst -
t_srv_src .
rate -JJj
smean .
sinpkt .
000 005 010 015 020 025 030 035
Relative Importance

Figure 8: Scikit Learn: Feature Importance of Decision Tree

Both feature importance analyses produced similar results,
identifying ‘sttl’ (source to destination time-to-live value) as the
most influential feature in network traffic classification. The
most critical features are prominently displayed in the upper
layers of the decision tree visualization, as shown in Figures 9

through 11.
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wWWeight Feature
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Figure 9: ELI5 Permutation Importance: Feature Importance

by Decision Tree
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Figure 10: Explainable Al Visualization: 3 nodes depth

Decision Tree Classifier
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Figure 11: Explainable Al Visualization: 5 nodes depth

Decision Tree Classifier

Decision tree visualizations enhance model explain ability by
allowing inspection of each decision level, along with its
corresponding feature and splitting value. If a network traffic
sample meets the specified condition, it follows the left branch;
otherwise, it moves to the right. The classification outcome is
depicted at each class line, depending on the selected tree depth.

Leveraging decision trees for ML-based intrusion detection
systems (IDSs) in IoT network traffic ensures high-accuracy
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classification, demonstrating strong capabilities in detecting
malicious threats. Additionally, the explain ability of decision
trees, facilitated through visual representations, enables human
analysts to interpret model behavior effectively. This deeper
understanding aids in analyzing the cybersecurity landscape of
IoT networks, providing insights into what the IDS has learned
and allowing comparisons with expected outcomes. Analysts can
further refine the model by incorporating new features or
applying feature engineering based on domain expertise,
ultimately improving the accuracy and reliability of the decision-
making framework.

Multi-layer Perceptron (MLP) Classifier

The MLP classifier was trained and tested using the
corresponding dataset, achieving an overall accuracy of 89.83%
on the test set. This indicates strong predictive performance in
distinguishing between normal and attack behavior in IoT
network traffic.

To enhance interpretability, the LIME (Local Interpretable
Model-Agnostic Explanations) library was used to generate
model-predictive visualizations for individual training set
predictions. LIME perturbs the original feature values, feeding
them into the trained classification model to observe changes in
predictions. It then assigns weights to the perturbed data based
on their proximity to the original instance. These sample weights
are used to measure variation and fit a linear permutation
regression model, which ultimately explains the original data
points. Figure 3.9 presents an example of the LIME Tabular
Explainer output, highlighting the top five most influential
features.

Normal Anack
stlc=-117

Prediction probabilities

ol [ L0
ko0 ]

Feature Value

Figure 12: Single Classification Prediction using the MLP
Classifier Explanation

The visual dashboard highlights the features and their
corresponding weights that contributed to predicting a given
network traffic record as "Normal." This classification is verified
as correct, as the actual class is also "Normal." The dashboard
provides strong individual explainability for classification
predictions, enabling human analysts to perform detailed
cybersecurity investigations or follow-up assessments on the
model’s decision-making process.

These interpretability tools enhance transparency, allowing
analysts to understand why specific network traffic patterns were
classified in a particular way. This capability is valuable for
future cybersecurity research, enabling the refinement of
detection strategies while still leveraging the high- performance

IMPACT FACTOR 6.228

advantages of an MLP classifier despite its inherent "black-box"
nature.

XGBoost Classifier

Like the other classifiers, the XGBoost classifier was trained and
tested on the dataset, achieving an accuracy of 89.89%. This
result demonstrates XGBoost's strong capability in classifying
network behavior, performing similarly to the MLP classifier.

To enhance interpretability, the SHAP (SHapley Additive
exPlanations) library was employed to analyze which training
samples and features had the most significant impact on the
classifier’s output. SHAP provides local explanation and
consistency, particularly for tree- based models like XGBoost. It
leverages game theory-based value calculations to determine
feature importance using the concept of "marginal contribution
to the model outcome." XGBoost’s built-in Tree SHAP
implementation was used to explain classification predictions on
the test set. Figure 12 visualizes a single prediction explanation,
while Figure 13 provides an overview of multiple predictions
through feature comparison and output classification values. The
function f(x) represents classification scores, where values closer
to 1 indicate attack behavior, while values near 0 signify normal
activity in network traffic records.

b = et
]
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Figure 14: SHAP Feature Importance on XGBoost Classifier

A SHAP feature importance plot, shown in Figure 3.14,
illustrates the mean importance of input training features in
predicting classification outcomes. The results align closely with
those of the Decision Tree (DT) classifier, reinforcing
consistency across models.

The SHAP summary graph provides insights into key feature
interactions and visually represents how feature values influence
classification predictions. In Figure 3.15, red indicates high
feature values, while blue represents low feature values. Along
the x-axis, higher SHAP values on the right correspond to
predictions of aggressive (attack) behavior, whereas lower SHAP
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values on the left indicate regular (normal) activity.
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Figure 15: SHAP Summary Plot for XGBoost

Additionally, SHAP wvalues can be used to generate SHAP
dependency graphs, which illustrate the impact of a single
feature across the entire dataset. These graphs plot the feature’s
values across multiple samples against their corresponding
SHAP values, capturing interaction effects between features.

Moreover, the SHAP Interaction Score Matrix Summary Graph
provides a comprehensive visualization of feature relationships.
This matrix includes main effects along the diagonal and
interaction effects between features off the diagonal, offering
deeper insights into how different features influence
classification predictions.

SHAP value for
sttl

=1 o =

W ] r\.
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ot_dst s t_dst_s. shytes dbytes msponse. swin smean

Figure 17: SHAP Interaction Value Summary Plot

Furthermore, the LIME package can be applied to the XGBoost
classifier to provide explanations for individual predictions,
similar to its use with the MLP classifier. By perturbing input
features and analyzing their impact on model predictions, LIME
offers local interpretability, helping to understand why specific
classifications were made.

IMPACT FACTOR 6.228

Validation Summary:

The validation of our proposed CNN-LSTM-MLP model for
intrusion detection in IoT gateways was conducted using
multiple evaluation techniques, including K-Fold Cross-
Validation (K=5), Holdout Validation, and Stratified Sampling.
These methods ensured that the model's performance was
assessed on diverse subsets of data, minimizing bias and variance.
Additionally, a Confusion Matrix Analysis was performed to
measure classification effectiveness, capturing True Positives
(TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN).

A comparison with other models, including Decision Tree, SVM,
and Random Forest, demonstrated the superiority of our
approach. The proposed model exhibited a significantly lower
False Positive Rate (7.5%) and False Negative Rate (8.8%),
ensuring reliable threat detection. These results highlight the
model’s ability to differentiate between normal and malicious
network traffic effectively.

In addition to numerical validation, graphical representations
such as Confusion Matrix Heatmaps and ROC Curves were
generated to visually assess classification performance. The
CNN layer successfully captured spatial patterns, while the
LSTM layers identified temporal attack dependencies, and the
MLP layer refined the classification. The hybrid approach
combining XGBoost for feature selection and deep learning for
classification proved to be an efficient method for intrusion
detection, outperforming traditional machine learning techniques.

IV.CONCLUSION

Machine learning models for IoT network traffic security in
intrusion detection systems (IDSs) are becoming increasingly
complex. However, human analysts remain crucial for
interpreting outcomes, optimizing resource allocation, and
developing cybersecurity strategies based on domain expertise.
ML algorithms are often perceived as "black boxes" due to the
lack of interpretability in their decision-making processes.
Explainable Al (XAI) techniques and established libraries, such
as SHAP and LIME, were applied to analyze feature importance
and explain classification decisions to enhance interpretability.
Increasing transparency in ML systems will foster greater trust in
IoT cybersecurity applications in the short term. Ultimately,
improved explainability will unlock new capabilities in IoT
security by providing deeper insights into how sophisticated
machine learning models detect cyber threats and assess the
degree of risk associated with potential attacks.
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