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------------------------------------------------------------------------------***-----------------------------------------------------------------------------------

Abstract: First, C. E. Shannon introduced Shannon's entropy, an entropy measure in communication theory. This 

measure is logarithmic in nature. In order to quantify information uncertainty, various academics developed new 

logarithmic and exponential entropy metrics after Shannon. In this study, a novel probabilistic entropy measure that 

efficiently measures complexity and uncertainty in complex systems is proposed using the quadratic equation. These 

novel probabilistic entropy Metrics have a big impact on how we understand complicated systems and how we make 

decisions in many fields. Several established entropy axioms have been used to verify the validity of the new 

probabilistic entropy measure. The findings show that quadratic entropy metrics perform better than current ones in 

capturing minute variations in system uncertainty and behavior.  In this paper, we discuss some properties of this 

measure.                                                     
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                                      I.INTRODUCTION: 

To quantify the degree of uncertainty in information, Shannon 

[1948] developed the first information metric, called entropy 

information. In situations where the random variable's value is 

unknown, the average information content is measured using this 

logarithmic probabilistic entropy. This Shannon Entropy, or 

information entropy, is defined as  𝐻𝑆(𝑃) = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1 , The 

entropy measure is continuous for probability and is never 

negative. It reaches its highest value, logn, when all possible 

events are equally likely. The primary disadvantage of this metric 

is that Shannon's entropy may be negative for certain probability 

distributions. It no longer qualifies as an uncertainty measure 

because of this restriction. Because of the importance of entropy 

in information theory, entropy literature developed quickly. 

A parametric generalization of Shannon's entropy was presented 

by Renyi [1961] after the original. Subsequently, researchers 

developed other parametric generalizations, such as Havrda and 

Charvat [1967] entropy, Kapur [1967,1997] entropy, and Tsallis 

[1988] entropy. These are all logarithmic entropies. As 𝑝𝑖 →

0, 𝑡ℎ𝑒𝑛 − log 𝑝𝑖 → ∞. Although the event information is always 

finite, this is the situation of infinite; hence, further assumptions 

are needed. In keeping with this perspective, Pal & Pal [1989, 

1992, 1999, 1991(a)] suggested an additional entropy measure in 

exponential form.  It is defined as follows:  𝐻𝑃𝑃(𝑃) =

∑ 𝑝𝑖𝑒
(1−𝑝𝑖)𝑛

𝑖=1 . It is always non-negative and for 𝑝𝑖 = 1/𝑛  It 

always has a definite upper bound e and is independent of n. 

Afterward, a generalized exponential entropy of order-α was 

proposed by Kvalseth [2000]. Application of Entropy to a 

Lifetime Model was introduced by Awad [1987]. Using a conic-

section equation, Sharma [2019] introduced probabilistic entropy 

metrics and their use in dimension reduction. The Use of the 

Entropy Function for Validating Results in Differential Calculus 

was introduced by Sharma [2024]. Different entropy metrics, such 

as trigonometric and hyperbolic measures, have been proposed by 

scholars in the literature. An additional benefit of these entropy 

measures is their applicability to a variety of issues, including 

pattern recognition, picture extraction, feature selection, feature 

evaluation, image thresholding, and more. In order to overcome 

the drawbacks of conventional entropy measures, this manuscript 

suggests a novel probabilistic entropy measure based on a 

quadratic function. With potential uses in a number of domains, 

such as machine learning, image analysis, and signal processing, 

the suggested probabilistic entropy measure is intended to offer a 

more sensitive and reliable assessment of uncertainty.  

Theoretical Ground: 

This section provides a concise overview of entropy, which is a 

measure of a random variable's uncertainty. Let the probability 

mass function of a discrete random variable X with support S be 

 𝑝(𝑥) = 𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑆, Notable definitions include the 

following: 

Shannon proposed the first logarithmic entropy, which has the 

following definition: 

The definition of a discrete random variable X's initial 

logarithmic entropy is as follows: 

𝐻𝐿1(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑆

              (2.1) 
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This entropy is expressed in bits with a log base of 2.  

 Let 𝑓𝑋(𝑥) be the density function of the continuous random 

variable X in the continuous case. The entropy of this density 

function is as follows: 

ℎ𝑙1(𝑋) = − ∫ 𝑓𝑋(𝑥) log 𝑓𝑋(𝑥) 𝑑𝑥

𝑆

               (2.2) 

We refer to this entropy as differential entropy. The primary flaw 

with this entropy measure is that it is not always non-negative; in 

fact, it can occasionally be negative, in which case it ceases to be 

an uncertainty measure.  

Another logarithmic entropy in literature is as follows: 

 Renyi [1961] introduces the entropy specified in (2.3). 

𝐻𝐿2(𝑋) =
1

1 − 𝛼
ln ∑ 𝑝𝑖

𝛼

𝑛

𝑖=1

, 𝛼 > 0, 𝛼 ≠ 1                (2.3) 

 Kapur [1967] introduces the entropy specified in (2.4). 

𝐻𝐿3(𝑋) =
1

𝛽 − 𝛼
ln

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑝𝑖
𝛽𝑛

𝑖=1

, 𝛼 ≠ 𝛽.                           (2.4) 

Kapur [1986] introduces the entropy specified in (2.5). 

𝐻𝐿4(𝑋) = − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑛

𝑖=1

+
1

𝑎
(1 + 𝑎𝑝𝑖) ln(1 + 𝑎𝑝𝑖)

−
1

𝑎
(1 + 𝑎) ln(1 + 𝑎) ,   𝑎 ≥ −1      (2.5) 

Pal and Pal [1989] created the exponential entropy measure with 

respect to Shannon entropy, which is defined as follows, to get 

around the drawbacks of the logarithmic entropy measure: 

Definition: For a discrete random variable X, the first 

exponential entropy is defined as: 

 

𝐻𝐸1(𝑋) = ∑ 𝑝(𝑥)𝑒(1−𝑝(𝑥))

𝑥∈𝑆

              (2.6) 

Let 𝑓𝑋(𝑥) be the density function of the continuous random 

variable X in the continuous case. The entropy of this density 

function is as follows:  

ℎ𝑒1(𝑋) = ∫ 𝑓𝑋(𝑥)𝑒(1−𝑓𝑋(𝑥))𝑑𝑥

𝑆

               (2.7) 

The advantage of this exponential entropy is that it is always non-

negative. 

Using the conic section equation, Sharma and Gupta [2019] 

developed some new entropy metrics. 

𝐻𝑆𝑐(𝑃) =
1

𝑛
∑ √(0.5)2 − (𝑝𝑖 − 0.5)2

𝑛

𝑖=1

;           −(2.8) 

𝐻𝑒1(𝑃) =
1

𝑛
∑ 𝑏 ∗ √1 −

(𝑝𝑖 − 0.5)2

(0.5)2
;

𝑛

𝑖=1

𝑤ℎ𝑒𝑟𝑒 0 < 𝑏

< 0.5;     −(2.9. 𝐴) 

𝐻𝑒2(𝑃) =
1

𝑛
∑ 𝑎 ∗ √1 −

(𝑝𝑖 − 0.5)2

(0.5)2
;

𝑛

𝑖=1

𝑤ℎ𝑒𝑟𝑒 0.5

< 𝑎;     −(2.9. 𝐵) 

𝐻𝑃(𝑃) = −
1

4𝑎𝑛
∑[(𝑝𝑖 − 0.5)2 − 0.25]

𝑛

𝑖=1

; 𝑤ℎ𝑒𝑟𝑒 𝑎

> 0          − (2.10) 

𝐻𝐻𝑏(𝑃) = −
𝑎

𝑏𝑛
∑ [(√𝑏2 + (𝑝𝑖 − 0.5)2)

𝑛

𝑖=1

−
1

2
(√4𝑏2 + 1)] ; 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 > 0 (2.11) 

Here 𝑝𝑖 ∈ 𝑃 𝑎𝑛𝑑 0 ≤ 𝑝𝑖 ≤ 1. 

These axioms are satisfied by a good probabilistic entropy 

measure: 

1. Non-negativity: Entropy is non-negative in its domain. 

2. Minimality: Entropy is minimum (i.e., 0) in certain 

situations (𝑝𝑖 = 0 𝑜𝑟 1. 

3. Maximality: Entropy is maximum in most uncertain 

situations (𝑝𝑖 = 0.5). 

4. Resolution: Entropy is increasing at 𝑝𝑖 ∈ [0, 0.5] and 

decreasing at 𝑝𝑖 ∈ [0.5, 1]. 

5. Symmetric: 𝐻(𝑝) = 𝐻(1 − 𝑝). 

6. Continuity: Entropy is a continuous function of the 

probability distribution 𝑃. 

7. Symmetry: Symmetric for permutations of 

𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛. 

8. Maximality: The entropy measure will be maximal if all 

the outcomes are equally likely, i.e. 

i. 𝐻(𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛) ≤

𝐻 (
1

𝑛
,

1

𝑛
,

1

𝑛
, … .

1

𝑛
). 
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II.PROPOSED WORK: 

In this section, a quadratic polynomial is used to construct a novel 

probabilistic entropy measure. The definition of a generic 

quadratic function is:   𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐              (3.1) 

where 𝑎 ≠ 0, and 𝑎, 𝑏, 𝑐 are constant. 

If in equation (3.1),  𝑐 = 0 𝑎𝑛𝑑 𝑎 = −1 𝑎𝑛𝑑 𝑏 = 1 then 

equation (3.1) is changed as 

𝑓(𝑥) = −𝑥2 + 𝑥 = (𝑥 − 𝑥2)              (3.2) 

The proposed probabilistic entropy measure for any probability 

distribution 'P' is now defined as follows using equation (3.2):                                            

𝐻𝑄(𝑃) = ∑(𝑝𝑖 − 𝑝𝑖
2)

𝑛

𝑖=1

       (3.3) 

Here, 𝑃 is the probability distribution, and 𝑝𝑖 ∈ 𝑃 & 0 ≤ 𝑝𝑖 ≤

1 𝑎𝑛𝑑 ∑ 𝑝𝑖 = 1 

A valid probabilistic entropy measure meets all of the axioms 

listed in Section 2 and is specified in (3.3). It is stated as a theorem 

that the suggested probabilistic entropy measure is legitimate. 

Theorem 1: Prove that the probabilistic entropy measure 

𝐻𝑄(𝑃) defined in (3.3) is a valid probabilistic entropy measure. 

Proof: This theorem can be proved by using the following 

lemmas: 

Lemma 1: 𝐻𝑄(𝑃) is non-negative, i.e., 𝐻𝑄(𝑃) = ∑ (𝑝𝑖 −𝑛
𝑖=1

𝑝𝑖
2) ≥ 0. 

Proof: 

𝐻𝑄(𝑃) ≥ 0 𝑖𝑓𝑓  ∑(𝑝𝑖 − 𝑝𝑖
2)

𝑛

𝑖=1

 ≥ 0 𝑖𝑓𝑓 (𝑝𝑖 − 𝑝𝑖
2) ≥ 0 

𝑖𝑓𝑓  𝑝𝑖(1 − 𝑝𝑖) ≥ 0 𝑖𝑓𝑓  𝑝𝑖  ≥ 0  𝑎𝑛𝑑 (1 − 𝑝𝑖) ≥ 0 𝑡ℎ𝑎𝑡 𝑖𝑠   𝑝𝑖  

≤ 1. 

It is true because of how probability is defined.  𝐻𝑄(𝑃) is hence 

non-negative. 

Lemma 2: 𝐻𝑄(𝑃) = ∑ (𝑝𝑖 − 𝑝𝑖
2)𝑛

𝑖=1 =

0 𝑖. 𝑒. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑓𝑓 𝑝𝑖 = 0 𝑜𝑟 1 

Proof: 

𝐻𝑄(𝑃) = ∑(𝑝𝑖 − 𝑝𝑖
2)

𝑛

𝑖=1

= 0 𝑖𝑓𝑓  (𝑝𝑖 − 𝑝𝑖
2) = 0 

𝑖𝑓𝑓  𝑝𝑖(1 − 𝑝𝑖) = 0  𝑖𝑓𝑓 𝑝𝑖 = 0 𝑜𝑟 1. 

Hence 𝐻𝑄(𝑃) is the minimum for certain cases. 

Lemma 3: 𝐻𝑄(𝑃) = ∑ (𝑝𝑖 − 𝑝𝑖
2)𝑛

𝑖=1  is maximum in most 

uncertain situations, i.e. 𝑝𝑖 = 0.5. 

Proof: The second-order derivative method is used to check that 

𝐻𝑄(𝑃) is maximum at 𝑝𝑖 = 0.5. Differentiate 𝐻𝑄(𝑃) concerning 

𝑝𝑖. 

𝑑(𝐻𝑄(𝑃))

𝑑(𝑝𝑖)
= 1 − 2𝑝𝑖 = 0; 

1 − 2𝑝𝑖 = 𝟎 ⟹ 𝑝𝑖 = 0.5  . 

𝒅𝟐(𝐻𝑄(𝑃))

𝒅𝑝𝑖
𝟐

= −𝟐 < 𝟎 

Hence 𝐻𝑄(𝑃) is maximum at 𝑝𝑖 = 0.5. 

Lemma 4: 𝐻𝑄(𝑃) is increasing at 𝑝𝑖 ∈ [0, 0.5] and decreasing 

at 𝑝𝑖 ∈ [0.5, 1] 𝑖. 𝑒.  𝐻𝑄(𝑃) satisfies the resolution property. 

Proof: It can be proved by the application of the derivative 

𝒅𝐻𝑄(𝑃)

𝒅𝑝𝑖
= ∑[𝟏 − 2𝑝𝑖]

𝑛

𝑖=1

 

𝒅𝐻𝑄(𝑃)

𝒅𝑝𝑖
≥ 𝟎 𝑎𝑡 𝑝𝑖 ∈ [0, 0.5]𝑎𝑛𝑑 

𝒅𝐻𝑄(𝑃)

𝒅𝑝𝑖
≤ 𝟎 at 𝑝𝑖

∈ [0.5, 1]  

Accordingly, it is claimed that 𝐻𝑄(𝑃) is rising at 𝑝𝑖 ∈

[0, 0.5]   and falling at  𝑝𝑖 ∈ [0.5, 1]. 

Lemma 5: 𝐻𝑄(𝑝) = 𝐻𝑄(1 − 𝑝) that is measure is symmetric 

(Dual) in nature. 

Proof:  

𝐻𝑄(1 − 𝑝𝑖) = ∑((1 − 𝑝𝑖) − (1 − 𝑝𝑖)
2)

𝑛

𝑖=1

 

= ∑(1 − 𝑝𝑖 − 1 − 𝑝𝑖
2 + 2𝑝𝑖)

𝑛

𝑖=1

= ∑(𝑝𝑖 − 𝑝𝑖
2)

𝑛

𝑖=1

= 𝐻𝑄(𝑃) 
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Hence 𝐻𝑄(𝑃) is symmetric (Dual) in nature. 

Lemma 6: 𝐻𝑄(𝑝) is a continuous function of 𝑃. 

Proof: Since 𝐻𝑄(𝑝) It is an algebraic function, and an algebraic 

function is continuous. So 𝐻𝑄(𝑝) is a continuous function of 𝑃.   

Lemma 7: 𝐻𝑄(𝑝) will be maximal if all the outcomes are equally 

likely (𝑝𝑖 =
1

𝑛
) i.e. 

𝐻𝑄(𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛) ≤ 𝐻𝑄 (
1

𝑛
,
1

𝑛
,
1

𝑛
, … .

1

𝑛
). 

Proof:  For 𝑛 In the equally probable event, the entropy is  

𝐻𝑄(𝑃) = ∑(𝑝𝑖 − 𝑝𝑖
2)

𝑛

𝑖=1

= ∑ (
1

𝑛
−

1

𝑛2
)

𝑛

𝑖=1

= 1 −
1

𝑛
 

Because of this, the probabilistic entropy measure is dependent on 

the number of equiprobable occurrences; the more equiprobable 

events there are, the higher the entropy value.  

Lemma 8: 𝐻𝑄(𝑃) is symmetric to the permutations of 

𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛, i.e. 

𝐻𝑄(𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛) = 𝐻𝑄(𝑝3, 𝑝1, 𝑝2, … . . 𝑝𝑛) 

Proof:  

𝐻𝑄(𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛) = ∑(𝑝𝑖 − 𝑝𝑖
2)

𝑛

𝑖=1

= ∑ 𝑝𝑖

𝑛

𝑖=1

− ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

= (𝑝1 + 𝑝2 + 𝑝3 + ⋯ . . +𝑝𝑛) − (𝑝1
2 + 𝑝2

2 + 𝑝3
2 + ⋯ . . +𝑝𝑛

2) 

(𝑝3 + 𝑝1 + 𝑝2 + ⋯ . . +𝑝𝑛) − (𝑝3
2 + 𝑝1

2 + 𝑝2
2 + ⋯ . . +𝑝𝑛

2)

= 𝐻𝑄(𝑝3, 𝑝1, 𝑝2, … . . 𝑝𝑛) 

Thus 𝐻𝑄(𝑃) is symmetric for permutations of 𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛. 

Because every lemma listed above demonstrates the assumptions 

of a valid entropy measure. Thus, a valid entropy measure is  

𝐻𝑄(𝑃). 

III.PROPERTIES: 

Sharma et al. [2024] proposed some extra properties as a 

validation of entropy measures: 

9. Entropy measure verified the rolle’s theorem.  

10. The entropy measure is neither increasing nor decreasing on 

(0,1).  

11. Entropy measure verified the Iagrange’s mean-value theorem. 

The proposed entropy also satisfied the condition proposed by 

Sharama et al. [2024], shown below: 

Lemma 9: Prove that the entropy measure 𝐻𝑄(𝑃) verified Rolle's 

theorem. 

Proof: For verification of Rolle’s Theorem 𝐻𝑄(𝑝) The entropy 

measure satisfied the following condition:  

1. 𝐻𝑄(𝑃) is continuous on [0, 1]; 

2. 𝐻𝑄(𝑃) is differentiable on (0, 1); and 

3. 𝐻𝑄(0) =  𝐻𝑄(1); 

 then, there must exist at least one point  𝑝 ∈  (0, 1) such that 

𝐻𝑄′( 𝑝) = 0 

 Since 𝐻𝑄(𝑝) is an algebraic polynomial, and an algebraic 

polynomial is continuous everywhere, and hence 𝐻𝑄(𝑝) is a 

continuous in [0, 1].   

 We know that 𝐻𝑄(𝑃) = ∑ (𝑝𝑖 − 𝑝𝑖
2)𝑛

𝑖=1 , Differentiating for  𝑝𝑖  ,  

𝑑(𝐻𝑄(𝑃))

𝑑(𝑝𝑖)
= 1 − 2𝑝𝑖, which exists for all 𝑝𝑖 ∈ (0,1). Thus 𝐻𝑄(𝑝) is 

derivable in (0,1). 

 𝐻𝑄(0) =0 and  𝐻𝑄(1) =0, this implies 𝐻𝑄(0) = 𝐻𝑄(1) . 

 Since all the conditions are satisfied, there must exist at least one 

point  𝑝  ∈ (0, 1) such that 𝐻𝑄′( 𝑝) = 0. 

𝑑(𝐻𝑄(𝑃))

𝑑(𝑝𝑖)
= 1 − 2𝑝𝑖 

Now 𝐻𝑄
′ ( 𝑝) = 0 which implies  1 − 2𝑝 = 0 which implies  𝑝 =

0.5 ∈  (0,1). 

 Hence, Rolle's theorem is verified. 

 

Lemma 10:  The entropy measure 𝐻𝑄(𝑃) is neither increasing nor 

decreasing on (0,1). 

Proof: Here     𝐻𝑄(𝑃) = ∑ (𝑝𝑖 − 𝑝𝑖
2)𝑛

𝑖=1   

Differentiating for  𝑝𝑖  ,  𝐻𝑄
′ ( 𝑝) = 1 − 2𝑝𝑖.   

The entropy measure 𝐻𝑄(𝑃) will be increased if 𝐻𝑄
′ ( 𝑝) >0 on 

(0,1). 
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That is, if 1 − 2𝑝𝑖 > 0 i.e., 1> 2𝑝𝑖 i.e.,𝑝𝑖 < 
1

2
. 

The entropy measure 𝐻𝑄(𝑃) will be decreased if  𝐻𝑄
′ ( 𝑝) < 0 on 

(0,1). 

That is, if 1 − 2𝑝𝑖 < 0 i.e., 1< 2𝑝𝑖 i.e.,𝑝𝑖 > 
1

2
. 

This shows that the entropy measure 𝐻𝑄(𝑃) is increasing on (0, 

0.5 ) and decreasing on ( 0.5 ,1 ) and hence, the entropy measure 

𝐻𝑄(𝑃) is neither increasing nor decreasing on (0,1). 

Figure1: 

The suggested entropy measure curve is increasing on (0,0.5) and 

decreasing on (0.5,1), as seen in Fig. 1. Consequently, on (0,1), 

the entropy measure 𝐻𝑄(𝑃) is neither rising nor falling. 

Lemma 11:  Entropy measure verified the Iagrange’s mean-value 

theorem. 

Proof: For verification of Lagrange’s mean-value theorem 𝐻𝑄(𝑝) 

The entropy measure satisfies the following condition: 

1. 𝐻𝑄(𝑃) is continuous on [0, 1]; 

2. 𝐻𝑄(𝑃) is differentiable on (0, 1); 

Then, there must exist at least one point  𝑝 ∈  (0, 1) such that 

𝐻𝑄
′ ( 𝑝) =

𝐻𝑄(1)−𝐻𝑄(0)  

1−0 
 . 

Since 𝐻𝑄(𝑝) being a polynomial is continuous for all real 𝑝 and 

hence 𝐻𝑄(𝑝) is a continuous in [0, 1]. 

Here 𝐻𝑄(𝑃) = ∑ (𝑝𝑖 − 𝑝𝑖
2)𝑛

𝑖=1 , Differentiating for  𝑝𝑖  ,  𝐻𝑄
′ ( 𝑝) =

1 − 2𝑝𝑖, which exists for all 𝑝𝑖 ∈ (0,1). Thus 𝐻𝑄(𝑝) is derivable 

in (0,1). 

Since all the conditions are satisfied, there must exist at least one 

point  𝑝  ∈ (0, 1) such that 𝐻𝑄
′ ( 𝑝) =

𝐻𝑄(1)−𝐻𝑄(0)  

1−0 
 . 

Now, 𝐻𝑄
′ ( 𝑝) = 1 − 2𝑝 and 𝐻𝑄(1) = 0 and 𝐻𝑄(0) = 0. 

This implies,  1 − 2𝑝 = 
𝐻𝑄(1)−𝐻𝑄(0)  

1−0 
 = 0, which implies 𝑝 = 0.5 ∈

 (0,1).  

 Hence, Iagrange’s mean-value theorem is verified. 

IV.CONCLUSION: 

This research paper presents a novel probabilistic entropy measure 

based on a quadratic polynomial, addressing the limitations of 

existing entropy measures. The proposed measure demonstrates 

desirable properties, including non-negativity and sensitivity to 

changes in probability distributions. Its effectiveness is validated 

through theoretical analysis and potential applications in various 

fields. This contribution advances the field of information theory, 

offering new avenues for uncertainty quantification and decision-

making under uncertainty. Future research directions include 

exploring the measure's applications in real-world scenarios and 

further refining its properties. 
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