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Abstract— in this paper, the results of a analysis for the seismic response of a hydropower station intake tower in step-like ground based on artificial 

boundary theory topography are presented. The topography finite element model was established to verify the correctness of the proposed method of viscous 

elasticity boundary by considering inconsistent reflective surface. After applying the method to an intake tower, the acceleration of bedrock was determined 

using the seismic inversion method, and the equivalent load of each node was afterwards estimated. Following is a list of the five different models that were 

established as follows: massless foundation, consistent input viscous elasticity boundary, inconsistent input viscous elasticity boundary, and whether set 

contact. After comparing displacement and stress, the results show that the proposed method with contact was the least disruptive. It is possible to draw the 

conclusion that the intake tower is in a state of overall stability since the base plate of the intake tower and the foundation were in a state of close adhesion 

during the entire process of the earthquake, both the sides and the rear side of the intake tower did not experience any disengagement phenomena from rock, 

and so on. Key Words: Fly over, design parameters, bending moment shear force, post processing, Staad Pro Connect. 
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INTRODUCTION 

 
Intake towers ensure water control project seismic safety as the 

project progresses. L-shaped rock terrain uses bank-tower intakes. 

The intake tower-mountain relationship impacts inlet deformation 

and stress.  

Seismic properties and loading determine engineering seismic 

analysis. Inversion of bedrock seismic data from ground 

acceleration increases seismic load realism.  

Dynamic analysis considers the superstructure's elastic foundation 

effect. Radiation dampening impacts foundations narrowly. Stable, 

efficient, and ubiquitous, local artificial boundaries partially 

decouple time and space. Many researchers found the viscoelastic 

boundary to be exact, stable, and easy to design in finite element 

software as a local artificial barrier.  

Scholars' three-dimensional viscoelastic artificial barrier intake 

tower dynamic analysis was accurate and applicable. Three-

dimensional viscoelastic barrier; flat terrain is best. The project's 

high-rock bank-tower intake is steep.  

 

Study the basin topography viscoelastic boundary and solve seismic 

wave motion of stepped topography utilizing virtual symmetric 

substructure. Dynamic amplification rises with free face 

displacement amplitudes and slope gradient. Symmetrical studies 

 
virtual processed the high and low side into 2D equally high 

boundary to overcome the steep topography viscoelastic boundary 

inconsistent input problem. But the back-tower intake position at 3D 

L-shape terrain, before and after the tower, has a high mutation level, 

not a gradient slope, and dynamic analysis requires three-directional 

seismic input, so it cannot change into two-dimensional difficulties. 

Thus, these methods cannot resolve the issue.  

Different backfill concrete heights and forms affect the intake tower 

because the link between the tower, backfill concrete, and rock is 

not completely solidified. studies the model of set contact between 

the intake tower and the surrounding rock, showing that the tower's 

tensile stress can be released and the stress level reduced, near to the 

actual condition. These investigations assume a massless foundation 

without foundation radiation damping.  

The intake tower's viscoelastic boundary with high rock is realized 

in this work. The method is tested numerically. Calculated  models 

with varied boundary conditions are discussed. Engineering 

recommendations conclude. 

Based on earlier viscoelastic boundary research, developed the 

method for abrupt step topography and used it to dynamically 

analyze an intake tower in a hydropower station.  

Tower displacement and stress under massless foundation and 

contact conditions are compared. Bank-tower intake with 

homogenous foundation can be analysed dynamically using this 

method.  

When the ground surface has obvious hyper mutation, viscoelastic 

artificial boundary should be used to calculate sub-regional node 

load, enlarged at the highly abrupt volley surface and greater than 

the incident and reflected superposition value.  

Consider the intake tower-rock-foundation interface. An 

earthquake's closed, separated, or sliding tower-rock state. Set 

contact parts can release tensile stress and lessen acceleration along 

the tower height, closer to reality. In practical engineering, bank-

tower intake is a popular water inlet that backs to the mountain for 

stability but cuts the mountain slope during construction, creating a 

steep landscape. This study shows that step topography must be 

considered, and suitable viscoelastic boundary setting and load input 

are made. 

Design, modelling, environmental analysis, and direct operation are 

the primary steps of any nuclear power unit (NPU). At the above 

stages, the installation concept is evaluated and its parameters are 

accurately estimated because building such an installation is very 

expensive. 

 

Planning and production management difficulties involve many 

factors that change with external conditions.  

 

Simulation, which provides qualitative and quantitative estimations 

of managed decision outcomes, is one of the most promising 

activities. Simulation methods dominate management theory and 

operations research in industrial companies and organizations.  

They help analyze functioning to improve production and 

management processes and coordinate and regulate all subsystems. 

 

Problem Statement 

 

“Design considerations and to design the parametric Study in 

nuclear tower such as parameters and also to know the process of 

prefabrication of various structural elements”. 
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Aim  

 

“Analysis of the Earthquake and the Reaction of the Intake and 

Outlet Towers because the joints between the structural elements of 

a structure will not create a structural system until much later, 

structural concerns for stability and safety must be made at each 

stage of the process.” 

 

Objectives 

 

• The main objective of designing of power intake outlet towers 

as nuclear power plant  

• Design and analyze the Power plant using software Staad pro 

Connect 

• We devise a technique to do the performance analysis of safety 

critical and control systems and to estimate performance based 

risk factor 

• To Analyze Non-functional requirements plays a critical role 

in designing variety of applications domain ranges from safety-

critical systems to simple gaming applications 

 

Methodology 

 

• Study for literature review survey 

• To study the construction techniques of method we have gone 

through various research papers, books, and some field works 

• Building design using Static Linear Analysis. 

• Building plan using AutoCAD 

• Dynamic analysis using Staad Pro Connect software 

• Study of prefabricated structure and all parameters 

• Analysis result 

• Result and discussion 

• Conclusion 

Design and Analysis  

 

 

 

 Design and Modelling 

 

 

Figure1.2: Displacement Due to Temperature Loading 

 

Figure1.3: Maximum Base Reaction 



                   || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774           

             INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH 

AND ENGINEERING TRENDS                  

WWW.IJASRET.COM                                                                        49 

 

 

Figure1.4: Plate stresses due to temp loading 

 

Figure1.5: SHEAR FORCE AND BMD RESULT TABLE 

 

Figure1.6: STRESSES DUE TO DEAD LOAD 

 

Figure1.7: Absolute stresses due to earthquake load 

 

Figure1.8: Absolute stresses due to temp load 

 

Figure1.9: Major Principal stresses at top 

 

 

Figure1.10: Max bottom principal stresses due to temp effect 

 

Figure1.11: Max bottom principal stresses due to dead load 
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Figure1.12: Max bottom principal stresses due to earthquake 

load 

 

Figure1.15: Maximum principal stresses at bottom 

 

 

Figure1.16: Min bottom principal stresses due to temp effect 

 

 

 

Figure1.18: Min bottom principal stresses due to earthquake 

load 

 
Figure1.21: Minimum principal stresses at bottom 

 

 
Figure1.22: Minor principal stresses at top 

 

 
Figure1.23: Tau max at top stresses due to earthquake load 

 

 

 
Figure1.25: Tau max principal stresses due to dead load 
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Table1.1: Displacement Due to Temperature Loading 

 

 

 

 

 

 

Graph 1.1Displacement Due to Temperature Loading 

 

Table1.2: Maximum Base Reaction 
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Graph1.2: Maximum Base Reaction 

 

Table1.3: Shear Force and BMD Result 
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Graph1.3: Shear Force and BMD Result 
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Table1.4: Shear Force and BMD Result 

 

 

 

 

 

 

 

 

              Graph1.4: Shear Force and BMD Result 

         Tables1.5: Absolute stresses due to earthquake load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Graph1.5: Absolute stresses due to earthquake load 
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6 13.8731 15.8 

7 15.7604 17.6 

8 17.6477 19.5 

9 19.535 31.4 

10 21.4223 23.3 

11 23.3096 25.2 

12 25.197 27.1 

13 27.0843 29 

14 28.9716 30.9 

15 30.8589 32.7 

16 32.7462 34.6 
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Table5.13: Min bottom principal stresses due to dead load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph5.13: Min bottom principal stresses due to dead load 

        

 

 

 

 

 
Table5.14: Min bottom principal stresses due to 

    earthquake load 
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 X-Axis Y-Axis 

1 0.419093 5.07216 

2 5.07216 9.72523 

3 9.72523 14.3783 

4 14.3783 19.0314 

5 19.0314 23.6844 

6 23.6844 28.3375 

7 28.3375 32.9906 

8 32.9906 37.6436 

9 37.6436 42.2967 

10 42.2367 46.9498 

11 46.9498 51.6029 

12 51.6029 56.2559 

13 56.2559 60.909 

14 60.909 65.5621 

15 65.5621 70.2151 

16 70.2151 74.8682 



                   || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774           

             INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH 

AND ENGINEERING TRENDS                  

WWW.IJASRET.COM                                                                        55 

 

 

Table5.15: Min principal stresses due to dead load 

 

 

 

Graph5.15: Min principal stresses due to dead load 

 

CONCLUSION 

• In the equally tapered seismic investigation region, 

displacement graphs showed increased 

displacement at all heights. Thin structure 

displacements rise with height. 

• Seismic and response spectrum analysis joint 

displacement decrease sequentially:  

• Uniform taper to one-third of 84-meter chimney. 

• Displacement will reach 84m chimney height. The 

84m uniform tapering portion needs 130.76mm 

wind analysis displacement data. 

• Maximum displacement effects require parametric 

design, unlike other models. 

• To limit seismic and wind load displacement, the 

finest RC chimneys are tapered and taller. 

• Maximum bending moment: 250.66 kilonewton 

meter DL+TEMP+EQX stress at bottom 30074.31 

mpa.  

• Maximum vertical reaction 29466.33 KN, bending 

moment 6817.58 Kip/in. 
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