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Abstract— We employ the Green’s function technique to 

investigate the vacancy-induced quasi-localized magnetic 

moment formation in monolayer graphene starting with the 

Dirac Hamiltonian, which focuses on the π- orbitals only, 

involving the nearest neighbor(NN)(t) and moderate second 

neighbor(SN)(t′ < t/3) hopping integrals. The vacancy defect 

is modeled by the addition of the on-site perturbation 

potential to the Hamiltonian. We find that, when (t′/t) << 1, 

the vacancy induced π-state at the zero of energy(zero-mode 

state(ZMS)) does not inhabit the minority sub-lattice due to 

the strong scalar potential induced by the vacancy(the ZMSs 

get lodged in the majority sub-lattice) whereas, when (t′/t) is 

increased, the  ZMS is somewhat suppressed. This shows 

that, not only the shift of the Fermi energy away from the 

linearly-dispersive Dirac points, the issue of this topological 

localization is also hinged on the ratio (t′/t). Furthermore, 

when a vacancy is present, the three sp2- hybridized σ states 

of each of the three nearest-neighbor carbon atoms, forming 

a carbon triangle surrounding the vacancy, are close to the 

Fermi energy (EF).  The Hund’s coupling between these σ 

electrons and the remaining electron which occupies the π 

state spin polarizes the π state leading to local moment 

formation close to EF. Since the system at the Fermi level has 

low electronic density, there is poor screening of such 

magnetic moments. This may lead to a high Curie 

temperature for such vacancy-induced moments.  

Keywords: Green’s function , sp2- hybridized σ states, 

Vacancy defect, Hund’s coupling, Spin polarized π- state, 

Quasi-localized magnetic moment. 
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I INTRODUCTION 

The monolayer graphene is a plane of sp2 hybridized carbon 

atoms arranged in a honeycomb lattice which makes the system 

a half-filled one with a density of states that vanishes at the 

neutrality point. The effective, low energy quasi-particle 

spectrum of the system is characterized by a dispersion which is 

linear in momentum [1] close to the Fermi energy. The latter 

implies that the corresponding quasi-particles would behave as 

Dirac mass-less chiral fermions. As a result of which many exotic 

phenomena, such as the Klein tunneling[2], the zitterbewegung 

in confined structures[3], etc. in the domain of quantum 

electrodynamics find a practical realization in this solid state 

material. The theoretical investigation of the consequence of 

ever-present vacancies in graphene owing to its exposed surface 

and the substrates is the focal point of the present paper. The work is 

inspired by the recent reporting of Ugeda et al. [4] where atomic 

vacancies have been artificially generated on a graphite surface and 

formation of quasi-localized magnetic moments corresponding to the 

state of zero-energy with considerable reduction in the carrier 

mobility has been observed in the neighborhood of these vacant sites.  

The electronic structure of mono-layer graphene can be captured 

within a tight-binding approach, in which the Dirac electrons are 

allowed to hop between the nearest neighbors (NN) with hopping 

integral t = 2.8 eV, and also between next nearest neighbors(2NN) 

with an additional hopping t′ (t′ < t/3). The inclusion of the second 

term introduces an asymmetry between the valence and conduction 

bands leading to the violation of the particle-hole symmetry. We have 

investigated the formation of vacancy-induced quasi-localized 

magnetic moment formation in this system starting with the 

Hamiltonian involving these hopping integrals and using the finite-

temperature Green’s function formalism (see section 2). The vacancy 

defect is modeled by the addition of the on-site perturbation potential 

to the Hamiltonian (see section 3). As regards the wave function of 

the impurity state, it is shown in section 4 that if practically the NN 

hopping is present in a bipartite lattice, a single vacancy in one sub-

lattice (this may be referred to as the minority sub-lattice since there 

is one atom less) introduces a state at the zero of energy and this state 

does not live on the minority sub-lattice (the state, in fact, is lodged 

on the majority sub-lattice as shown by Castro Neto et al. [5] using 

the rank-nullity theorem in linear algebra). The first result follows 

from the approximate particle-hole symmetry whereas the second 

result follows by examining the perturbed wave function(PWF) in the 

presence of the impurity potential(U0). The equation relates the 

perturbed wave function to the unperturbed wave function via the 

Green’s function  

G0 : │ψ › = │ψ 0› + G0 U0 │ψ ›. We obtain 

 │ψ › = │ψ 0› + G0 U0 │ψ0 ›+ G0 U0 G0 U0│ψ › = │ψ 0› + {G0 U0 │ψ0 

›/(1− G0 U0 )}. 

From this equation, one may also estimate the spread of the wave 

function to the minority sub-lattice if the 2NN interactions are present. 

We next provide in section 4 a heuristic but compelling argument to 

clarify how the magnetic moment formation takes place with an 

isolated vacancy. Our argument is based on the fact that the sp2 –

hybridized σ states of a carbon atom (in graphene), ordinarily omitted 

from the tight- binding graphene Hamiltonians (which focus on the π 

orbitals), are very important when a vacancy is present as these states 

get introduced near the Fermi energy.  They control the electronic 

behavior of the vacancy as explained in brief in section 4.  
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II. UNPERTURBED PROPAGATORS OF MASS-LESS 

CHIRAL FERMIONS 

The Dirac mass-less chiral fermions in mono-layer graphene are 

described by the Hamiltonian H0 = ∑k (a†
kb†

k)    
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where 𝛾 = 𝛾(𝒌) = −t× 

                                                                 
).exp(1,2,3j jik  =

.  

The operators a†
k and b†

k, respectively, correspond to the 

fermion creation operators for A and B sub-lattices in the mono-

layer. The valley and the spin degeneracy factors (gν = gs =2) are 

to be included later on in the density of states. The δj’s are three 

nearest neighbor vectors, δ1 =(a/2)(  , δ2 =(a/2)(  

,and  δ3 =a(   This leads to = −t[2 

exp(ikxa/2) cos(√3kya/2)+exp(−ikxa)]. With the inclusion of the 

second neighbor hopping (hopping parameter t′≈ 0.15 eV), the 

element β = β(k) =
).exp(' 1,2,...6j jdikt  =

 = t′[2cos(  kya) 

+4 cos(  kya/2)cos(  kxa/2)] and djs are the second NN 

positions given by d1,2 = ±a1, d3,4 = ±a2, d5,6 = ±(a2 − a1 ) where 

a1 = (a/2)( 3  and a2 = (a/2)( 3  One obtains the 

particle-hole asymmetric energy bands from (1):  E±(k)=±  [3 

+2cos(  kya) +4 cos(  kya/2)cos(  kxa/2)]1/2  + t′[2cos (  

kya)  + 4 cos(  kya/2) cos(  kxa/2)]. If   t′ < 0, then E±(k)=±  

[3 +2cos(  kya) +4 cos(  kya/2)cos(  kxa/2)]1/2− [2cos (

 kya) + 4 cos(  kya/2) cos(  kxa/2)]. In what follows we 

take t′ > 0. 

In order to ultimately describe the formation of vacancy-induced local 

magnetic moment state formation in the system under consideration, 

we  introduce few unperturbed thermal  averages in this section 

determined by the Hamiltonian in (1),viz. G0
AA(k,τ) = −‹T{ak(τ) 

a†
k(0)}›, G0

AB(k,τ) = −‹T{ak(τ) b†
k(0)}›, G0

BA(k,τ) = −‹T{bk(τ) 

a†
k(0)}›, and G0

BB(k,τ) = −‹T{bk(τ) b†
k(0)}› as a preliminary measure. 

The vacancy defect, modeled by the addition of the on-site 

perturbation potential to the Hamiltonian, will lead to the perturbed 

propagators as will be shown in the next section.  Here T is the time-

ordering operator which arranges other operators from right to left in 

the ascending order of imaginary time τ. The first step of the scheme 

of calculation of real-space unperturbed propagators involves the 

consideration of (imaginary) time  evolution of the operators ak(τ) 

where, in units such that ħ =1, ak(τ)=exp(Hτ)ak(0) exp(−Hτ). We 

obtain, for example,  a k = − β a k – γ*  bk, bk= − β b k – γ ak, and so 

on. Here   ( / τ ) and the argument part has been dropped in 

writing the operators ( ak(τ), bk(τ)) and their derivative. As the next 

step, we find that the equations of motion of the averages are given by 

 G0
AA(k,τ) = − β G0

AA(k,τ) – γ* G0
BA(k,τ) − δ (τ),  G0

BA(k,τ) = − β 

G0
BA(k,τ) – γ G0

AA(k,τ),  G0
BB(k,τ) = − β G0

BB(k,τ) – γ G0
AB(k,τ), 

and  G0
AB(k,τ) =−β G0

AB(k,τ)–γ* G0
BB(k,τ). The third step is the 

calculation of the Fourier coefficients Gαβ(k,ωn) = 0∫βdτ eiωnτ Gαβ(k,τ) 

(where the Matsubara frequencies are ωn = [(2n+1)π / β] with n = 

0,±1,±2,….) of these temperature Green’s functions. Here β= (kBT)−1 

.We refrain from writing explicitly the equations to determine these 

coefficients as this is a trivial exercise. Upon solving the equations, in 

view of the Hamiltonian in (1), we obtain (replacing iωn = (ω + iη) 

where η stands for 0+) 

 

                   G0
AA

 (k,ω) = G0
BB

 (k,ω) = (ω + iη− E+(k))−1  (ω + iη− E−(k))−1(ω + iη− E+(k)+ ),                 

                                                          = (1/2)[(ω + iη− E+(k))−1 + (ω + iη− E−(k))−1], 

  

                   G0
AB

 (k,ω) =  (ω + iη− E+(k))−1  (ω + iη− E−(k))−1  

                                       = ( /2| )[(ω + iη− E+(k))−1 − (ω + iη− E−(k))−1], 

 

                   G0
BA

 (k,ω) =  (ω + iη− E+(k))−1  (ω + iη− E−(k))−1 

                                        = ( /2 | )[(ω + iη− E+(k))−1 − (ω + iη− E−(k))−1].         (2) 

 

The final step is the calculation of the real space propagators. For example, the propagator G0
0,A; 0,A(ω) which refers 

to the central cell(denoted by the index’0’) and the sub-lattice ‘A’ is given by   G0
0,A; 0,A(ω) =   ΏBZ

−1  ∫dk 

exp[ik.(r0,A − r 0,A)] G0
AA

 (k,ω) = ΏBZ
−1  ∫dk (1/2)[(ω + iη− E+(k))−1 + (ω + iη− E−(k))−1] = F0(ω)−iπ ρ(0)

0A(ω), 

where F0(ω) is the real part and (−π−1 ρ(0)
0A(ω)) is the imaginary part of the propagator. Using the result (x ± iη )-1 

= [P(x-1) ± (1/i) π δ (x)], where Р  represents  a Cauchy’s principal value, one may write  

 

      G0
0,A; 0,A(ω) = ΏBZ

−1  ∫dk (1/2)[ P(ω − E+(k))−1− i π δ (ω − E+(k))  

 

                                                                             + P(ω − E−(k))−1− i π δ (ω − E−(k))].     (3) 
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This enables us to write ρ(0)
0A(ω) as the sum of two δ-functions: ρ(0)

0A(ω)  = ΏBZ
−1  ∫dk ρ0(k,ω), ρ0(k,ω) = (1/2)[ 

δ (ω − E+(k)) + δ (ω − E−(k))]. Now upon taking the real part F0(ω) = ΏBZ
−1  ∫dk (1/2) P [(ω − E+(k))−1+ (ω − 

E−(k))−1 ] and using the expression of ρ0(k,ω), in terms of δ-functions, here, one may write 

 

          F0(ω) = (1/2) ΏBZ
−1  −∞∫+∞ dε ∫dk ρ0(k,ε) P[(ω − E+(k))−1+ (ω − E−(k))−1 ] 

 

                    =  (1/4) ΏBZ
−1

−∞∫+∞ dε ∫dk [ δ (ε − E+(k)) + δ (ε − E−(k))] 

                                                                          P[(ω − E+(k))−1+ (ω − E−(k))−1 ] 

 

                                      =  (1/2) −∞∫+∞ dε ρ(0)
0A(ε) P[(ω −ε)−1 ]                                              (4) 

 

where the formal definition of the Cauchy principal value operator is  

 

                  P 0∫+∞ dx f(x) [(ω2 –x2)−1] =  Lim η→0[0∫ω−η dx + ω+η ∫∞ dx ] f(x) (ω2 –x2)−1.        

 

One may note that ρ(0)
0A(ε) = constant is inadmissible as in that case  F0(ω) = constant ω 0∫+∞ dε P[(ω2 –ε2)−1 

]. The Cauchy principal value identity is 0∫+∞ dε P[(ω2 –ε2)−1 ] = 0. Since the real part equal to zero does not 

make sense, so indeed  ρ(0)
0A(ε) ≠ constant.  

We choose to write ρ0(k,ω) introduced above in terms of Lorentzians. We obtain the unperturbed dimensionless 

local density of states (LDOS) at the central cell (and the sub-lattice ‘A’ ) as  ρ(0)
0A(ε/ ) = ΏBZ

−1  ∫d(ka) ρ0(k,ω) 

where  

 

        ρ0(k,ω) = (Ѓ/ ) 1/(( (ε/ )− E(k) )
2 + (Ѓ 2 )}+ 1/(( (ε/ )+ E(k) )

2 +(Ѓ 2)}], 

 

             E(k) = [3 +2cos(  kya) +4 cos(  kya/2)cos(  kxa/2)]1/2   

 

                                                                           + (t′/ )[2cos (  kya)  + 4 cos(  kya/2) cos(  kxa/2)]. 

 

So, in terms of dimensionless quantities, Eq.(4) may be written as 

 

                    F0(ω/ )] = (1/2) −∞∫+∞ d(ε/  [ ρ(0)
0A(ε/ )] P[(ω/  −ε/ )−1].            (5) 

It is crucial for us to calculate [ ρ(0)
0A(ε/ )]. This will yield F0(ω/ ) from Eq.(5). Furthermore, as we shall see in the next section, 

this will also yield the LDOS at the impurity site calculated using the full Green’s function. We have plotted the quantity[  ρ(0)
0A(ε/

)] as a function of (ε/ ) below in Figure 1. For the comparison purpose we have also plotted the square lattice tight band DOS in 

the Hubbard model which clearly shows van Hove singularity at (ε/ ) = 0. It may be mentioned that as long as long as t′ < /3, we 

find [  ρ(0)
0A(ε/ )] has two peaks at (ε/ ) > 0 and (ε/ ) < 0 (see Figure 1(a)). However, when t′ is close to /3, there is a drastic 

change in the LDOS (see Figure 1(b)). It resembles the square lattice tight band DOS in the Hubbard model. Thus, in monolayer 

graphene many such issues are hinged on the ratio (t′/t). 

III. THE VACANCY DEFECT AND FULL GREEN’S FUNCTION MATRIX 

As we have noted above, the impurity is modeled here by adding an on-site perturbation V to the Hamiltonian H = H0 + V where V = U0 

a†
0A a0A , with the impurity located in the central cell on the A sub-lattice and U0 being the strength of the impurity potential (vacancy 

corresponds to U0 >> / ). The key quantity to compute is the full Green’s function(GF) matrix GFull (ω), which is related to the 

unperturbed Green’s function G0(ω) through the Dyson’s equation GFull(ω) = G0 (ω)+ G0(ω)V GFull(ω). With the localized impurity 

potential, the Dyson’s equation becomes 

                                                              GFull i,α; j,β (ω) =  G0 i,α; j,β (ω) + U0 G0 i,α; 0,A(ω) GFull 0,A; j,β(ω) 

which upon inversion yields 

                                                       GFull i,α; j,β (ω) =  G0 i,α; j,β (ω) + { U0 G0 i,α; 0,A(ω) G0 0,A; j,α(ω)/(1− U0 G0 0,A; 0,A(ω))}    (6) 
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with (i,α) (and (j,β)) being the cell and sub-lattice indices. Here the propagator G0 i,α; j,β (ω) is given by  

                                      G0 i,α; j,β  (ω) =  ΏBZ
−1  ∫dk exp[ik.(rj,β − r i,α)] G0

αβ
 (k,ω) ,  G0

αβ
 (k,ω)  = ‹ kα│ G0 (ω)│kβ ›. 

In fact, we have used the Bloch basis function │jβ › = N−1/2 ∑k exp(ik. r j,β) │kβ › to arrive at the result above, where riα = Ri+rα are the 

atom positions and N is the number of unit cells in the crystal.It follows from above that the full Green’s function GFull 0,A; 0,A(ω) is given 

by  

                               GFull 0,A; 0,A (ω) =  G0 0,A; 0,A (ω) + { U0 G0 0,A; 0,A(ω) G0 0,A; 0,A(ω)/(1− U0 G0 0,A; 0,A(ω))} 

                                                        = ( F0(ω)−iπρ0(ω))+{U0 ( F0(ω)−iπρ0(ω))2 /(1− U0 F0(ω) +iπ U0 ρ0(ω))} 

                                                        = ( F0(ω)−iπρ0(ω)) + {U0( F0(ω)2−π2ρ0(ω)2−2iπρ0(ω) F0(ω))/ (1− U0 F0(ω) +iπ U0 ρ0(ω))}. (7) 

All quantities of interest may be expressed  in terms of the full Green’s function GFull , e. g., the local density of states (LDOS) at a specific 

site ’i’ (with sub-lattice index ‘α’) is expressed as ρiα(ω) = −π−1ImGFull
iα,iα(ω). From Eq. (7), the LDOS at the impurity site has an especially 

simple form  

                                                             ρ0A(ω) = ρ(0)
0A(ω) / [(1− U0 F0(ω))2 +(π ρ(0)

0A(ω) U0 )2 ]                            (8) 

where ρ(0)
0A(ω) = −π−1ImG0

iα,iα(ω). Now in view of Eqs. (7) and (8), the contribution of the impurity has a sharp peak at the resonance 

energy E0 satisfying the resonance condition (1− U0 F0(E0)) = 0. Near the resonance we Taylor expand F0(ω) as F0(ω) = U0 
−1 + F′0(E0) (ω 

− E0 ) + (1/2)F′′0(E0) (ω − E0 )2+….. This enables us to write  

                          ρ0A(ω) = ρ(0)
0A(ω) ( F′0(E0))−2 

 

                                                            [ ((ω/  – (E0 / ))2 +(1/4)( 2F′′0(E0)/ ( F′0(E0)))2 ((ω/  – (E0 / ))4  

 

                                             + ( 2 F′′0(E0) / F′0(E0) ) ((ω/  – (E0 / ))3+(π ρ(0)
0A(ω) (U0 / )2 ]−1.        (9) 

 

The entire exercise above allows us to calculate the full propagator GFull 0,A; 0,A (ω) from (4). The plot of [  ρ0A(ε/ )] as a function of 

(ε/ ) is shown in Figure 2. We have assumed in Figure 2(a) the following numerical values: The  level-broadening factor (Ѓ ) =0.05, 

the ratio (t′ /  = 0.08, E0/  (blue curve) = 0.5, E0/  (green curve) = 0.1, U0/  (blue curve) = 1, and U0/  (green curve) = 10. 

The peaks correspond to broad resonances. The particle-hole symmetry is approximately present. Our result implies that introducing a 

vacancy in an otherwise perfect lattice, immediately creates a zero energy mode state (ZMS). This is important result because ZMS’s are 

created precisely at the Fermi level, and have this peculiar topological localization determining that they should live in just one of the 

lattices (see next section). In Figure 2(b) we have shown the plot of [  ρ0A(ε/ )] as a function of (ε/ ) for (t′ /  = 0.2.  The rest 

of the numerical values are the same as in Figure 2(a).The suppression of ZMS occurs due to increase in the value of  (t′ /  

IV. WAVE FUNCTION LOCALIZATION AND MOMENT FORMATION 

As regards the wave function of the impurity state, it is seen above that if 2NN interaction present in a bipartite lattice is much weaker 

than the NN interaction, a single vacancy in one sub-lattice (which may be referred to as the minority sub-lattice now since there is one 

atom less) introduces a state at the zero of energy (ZMS) and the result basically follows from the approximate particle-hole symmetry. 

We shall now see that this state does not live on the minority sub-lattice. This result follows by examining the perturbed wave function 

(PWF) in the presence of the impurity potential.  

  

In view of the PWF given in section 1 and the fact that G0
0,A; 0,A(ω) =   ΏBZ

−1  ∫dk exp[ik.(r0,A − r 0,A)] G0
AA

 (k,ω) is given by [F0(ω)−iπ 

ρ(0)
0A(ω)], we find that the perturbed wave function at a site i and the sub-lattice α is given by 

  

                      ψ iα =  ψ 
0
 iα  + { U0G0

 iα,0A
 (ω)ψ0

 0A /(1−  U0 G0
 0A,0A(ω))}  = ψ 

0
 iα + [(U0 G0

 iα,0A
 (ω) ψ0

 0A)/{(1− F0
 U0 )+ iπ ρ(0) 

0A }]. 

 

Under the resonance condition this yields  

                                                                       ψ iα =  ψ 
0
 iα  + {G0

 iα,0A
 (ω)ψ0

 0A /( iπ ρ(0)
0A (ω))}. 

From this equation one obtains 

                        ψ iA =  ψ 
0
 iA + {G0

 iA,0A
 (ω)ψ0

 0A /( iπ ρ(0)
0A (ω))} =  ψ0

 0A {F0(ω)/( iπ ρ(0)
0A (ω))} = ψ0

 0A { (U0 / −1/( iπ ρ(0)
0A (ω))} 
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where the last line follows from the fact that for ZMS F0(ω) = U0 
−1 

. Since the strong scalar potential ((U0 /  is induced by 

the vacancy it follows from above that ZMS cannot live on the 

minority sub-lattice. As regards the issue of wave function residing 

on the majority sub-lattice, one may refer to a seminal paper by 

Castro Neto et al. [5]  where the authors have proved that, if there 

is an imbalance in the number of atoms in the two sub-lattices in a 

bipartite lattice, viz., n = NB − NA > 0, there are n number of 

degenerate solutions with the eigenvalue equal to the on-site energy 

of the majority sub-lattice with the wave functions residing entirely 

on this sub-lattice ( the wave function decays inversely with 

distance[6]). The proof is based on the rank-nullity theorem in 

linear algebra; we shall not repeat this proof here. We, however, 

note that the theorem has an important implication: If the more than 

one vacancies are present one in each cell of the system connected 

by the lattice translational vectors, i.e. all are located on the same 

sub-lattice forming the minority sub-lattice, and if ‘n’ is the number 

of unit cells in the crystal, then according to the theorem, there 

should be ‘n’ zero-modes in the Brillouin zone (BZ) which is also 

precisely the number of Bloch momentum points in the BZ. These 

states then form adispersion-less band in the tight-binding 

calculations at zero energy. 

We now wish to provide an instructive argument to clarify how the 

magnetic moment formation takes place with an isolated vacancy. 

We first recall that the atomic configuration of the carbon atoms is 

1s22s22p2. However, in graphene, the electronic configuration is 

1s22s2p3. In Figure 3 we have shown the sp2-hybridized orbitals of 

a carbon atom in graphene. Due to the sp2-hybridization the atoms 

form a hexagonal lattice with unit cell consisting of two atoms with 

σ - bond on the two sub-lattices A and B. The pz-orbitals with π-

bond do not participate in the sp2-hybridization. The electrical 

conduction is  basically due to the hopping between the pz orbitals. 

In fact, graphene has only one conduction electron per atom, which 

is in the 2pz state. Now without a vacancy, the sp2 -states are lodged 

away from the Fermi energy (EF) due to strong interaction with 

neighboring orbitals along the C-C bonds. However, when a 

vacancy is present, the three sp2-orbitals of each of the three 

nearest-neighbor carbon atoms, forming a carbon triangle 

surrounding the vacancy, have their bonding partners missing, so 

that they occur near EF, with their on-site energies below the π 

orbital energies because of the s-orbital component present in the 

σ-states. The on-site Coulomb interaction would prevent the 

occupation of a fourth sp2 - state, for that would cause a double 

occupancy of a dangling bond on the carbon triangle involving high 

energy cost. Thus, the remaining electron occupies the π states. The 

Hund’s coupling with the σ electrons will spin polarize the π state, 

with the energy of the majority-spin state now being lodged below 

EF. This leads to a magnetic moment (~μB ) formation. In 

conclusion, we wish to note that since the system at the Fermi level 

has low electronic density, there is poor screening of such magnetic 

moments. This may lead to a high Curie temperature for such 

vacancy-induced moments.  

 

 
(a) 
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(b) 

Figure 1. (a)The plot (blue curve) of [  ρ(0)
0A(ε/ )] as a function of (ε/ ). The level-broadening factor (Ѓ ) =0.2. The ratio (t′ /  

= 0.08. The green curve is the square lattice tight band DOS in the Hubbard model. (b) The plot (blue curve) of [  ρ(0)
0A(ε/ )] as a 

function of (ε/ ) for the  level-broadening factor (Ѓ ) =0.05 and the ratio (t′ /  = 0.3. The plot is qualitatively almost similar to the 

green curve corresponding to the square lattice tight band DOS in the Hubbard model. 
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(b) 

Figure 2. (a)The plot  of [  ρ0A(ε/ )] as a function of (ε/ ). The ratio (t′ /  = 0.08, E0/  (blue curve) = 0.5, E0/  (green curve) = 

0.1, U0/  (blue curve) = 1, and U0/  (green curve) = 10. The peaks correspond to broad resonances. The particle-hole symmetry is 

approximately present. As the impurity potential U0 is increased to infinity, the solution E0 approaches the zero of energy resulting in the 

so-called “zero-mode” state. (b) The plot  of [  ρ0A(ε/ )] as a function of (ε/ ). The ratio (t′/  = 0.2 and rest of the numerical values 

are the same as in (a), The particle-hole asymmetry and the suppression of the ZMS are the important features. 

 
Figure3. The sp2 –hybridized orbitals of a carbon atom in graphene(s is like a ball, p is like a dumb-bell, and in sp hybrids one electron is 

waiting for another to fill in(bonding)). There is one electron in each of the three sp2 –hybridized orbitals (say, in x-y plane; the angle 

between any two such orbitals is 120o) plus one electron in pz orbital(perpendicular to the x-y plane). Very strong covalent bonds are 

formed through sp2-orbitals when neighboring carbon atoms come close. 

 

V. Discussion 

 

In this paper, we have discussed the physics of local moments on monolayer graphene(MLG). We have, in our discussion, 

ignored the effects of electron–electron interactions among the MLG electrons. It has been implicitly assumed that the 

perturbative effects of electron–electron interactions are benign and will not lead to qualitatively new many-body effects. It 

has been observed [7]in bilayer graphene(BLG) system that a substrate partially screens the BLG electron–electron 

interactions and reduces the many-body gap. A similar effect may be expected in ,say, van der Waals heterostructures 

(vdWHs) [8-15] assembled from atomically thin layers of graphene and TMDs (two dimensional  semiconducting  transition 
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metal dichalcogenide acting like a substrate). The system is generally referred to as Gr-TMD. Though the combination of 

adatom–graphene hybridization and Hubbard-like interactions on the adatom has been studied in the context of local moment 

formation [16, 17], Kondo physics [18–22], and RKKY interactions [23–27], the competition between impurity physics  and 

many-body interactions in Gr-TMD deserves a careful separate investigation. The study of vacancy/adatoms on standalone 

MLG/ Gr-TMD/…..is also of interest to the nanophysics community  given the possibility of controlling local moment 

physics, and adatom–adatom spin and density interactions, by electrostatic doping[28].In view of the rapid development in 

the field of graphene, graphene hybrid structures, alternative 2D materials and the general interest in investigating new 

possibilities thrown up by the spin-dependent physical properties, etc., doubtless, further revelations are waiting. 
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