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Abstract: - Random numbers are used in a extensive variety of packages. Pseudo random variety mills are gradual and 

high-priced for many programs whilst pseudo random wide variety mills (PRNG) suffice for most packages. Although a 

majority of random wide variety generators had been applied in software program degree, growing call for exists for 

hardware implementation because of the arrival of quicker and excessive density Field Programmable Gate Arrays 

(FPGA). FPGAs make it possible to implement complex structures, including numerical calculations, genetic programs, 

simulation algorithms and many others. at hardware level.  

This paper discusses in element the hardware implementation of several PRNGs and their characteristics. Random 

range generator is needed drastically by means of many applications like cryptography, simulation, numerical analysis, 

textual content-to-speech and so forth. Most C libraries have a couple of library routines for initializing, after which 

producing random numbers. For parametric speech synthesis application, a random quantity generator is needed to 

produce noise samples. Therefore, a need has been felt for the design of a committed hardware for random number 

generator that generates one random variety per cycle so that text-to speech conversion is finished in actual time. 

          ---------------------------------------------------------------------***--------------------------------------------------------------------- 

I INTRODUCTION 

Pseudo Random Number Generators (PRNGs) have 

become indispensable component in many cryptographic 

systems, including PIN/password generation, 

authentication protocols, key generation, random padding 

and nonce generation. PRNG circuits utilize a non-

deterministic random process, usually in the form of 

electrical noise, as a basic source of randomness. Along 

with the noise source, a noise harvesting mechanism to 

extract the noise, and a post-processing stage to provide a 

uniform statistical distribution are other important 

components of the PRNG. Our focus is to design an 

improved FPGA based PRNGs, using purely digital 

components. Using digital building blocks for PRNGs has 

the advantage that the designs are relatively simple and 

well-suited to the FPGA design flow, as they can suitably 

leverage the CAD software tools available for FPGA 

design. However, digital circuits exhibit comparatively 

limited number of sources of random noise, e.g. 

metastability of circuit elements, frequency of free 

running oscillators and jitters (random phase shifts) in 

clock signals. As would be evident, our proposed PRNG 

circuit utilizes the frequency difference of two oscillators 

and oscillator jitter as sources of randomness. 

Reconfigurable devices have become an integral part of 

many embedded digital systems, and predicted to become 

the platform of choice for general computing in near 

future. From being mainly prototyping devices, 

reconfigurable systems including FPGAs are being 

widely employed in cryptographic applications, as they 

can provide acceptable to high processing rate at much 

lower cost and faster design cycle time. Hence, many 

embedded systems in the domain of security require a 

high quality PRNG implementable on FPGA as a 

component. We present a PRNG for Xilinx FPGA based 

applications, which has a tunable jitter control capability 

based on DPR capabilities available on Xilinx FPGAs. 

The major contribution of this paper is the development 

of an architecture which allows on–the–fly tunabilty of 

statistical qualities of a PRNG by utilizing DPR 

capabilities of modern FPGAs for varying the DCM 

modeling parameters. To the best of our knowledge this is 

the first reported work which incorporates tunability in a 

PRNG. 

This approach is only applicable for Xilinx FPGAs which 

provide programmable clock generation mechanism, and 

capability of DPR.DPR is a relatively new enhancement 

in FPGA technology, whereby modifications to 

predefined portions of the FPGA logic fabric is possible 

on–the–fly, without affecting the normal functionality of 

the FPGA. Xilinx Clock Management Tiles (CMTs) 

contain Dynamic Reconfiguration Port (DRP) which 

allow DPR to be performed through much simpler means 
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[1]. Using DPR, the clock frequencies generated can be 

changed on–the–fly by adjusting the corresponding DCM 

parameters. DPR via DRP is an added advantage in 

FPGAs as it allows the user to tune the clock frequency as 

per the need. Design techniques exist to prevent any 

malicious manipulations via DPR which in other ways 

may detrimentally affect the security of the system [2]. 

Mersenne Twister (MT) is a widely-used fast 

pseudorandom number generator (PRNG), designed by 

Matsumoto [8]. More CPU time is required for 

initialization than for generation in MT and hence, next to 

Mersenne Twisters, WELL generators were introduced by 

Panneton [9]. CPUs for personal computers later, 

acquired new features of SIMD operations (i.e., 128- bit 

operations) and multi-stage pipelines.128-bit based 

PRNG was proposed which was named as SIMD-oriented 

Fast Mersenne Twister (SFMT), which is analogous to 

MT using SIMD operations proposed by Saito[7]. 

Tsoi[10] mentioned that if the function call is avoided, 

WELL may be slower than MT for some CPUs. The 

SFMT pseudorandom number generator is a very fast 

generator with satisfactorily high-dimensional 

equidistribution property. Then Random number 

generators based on linear recurrences modulo 2 were 

introduced. Linear Feedback Shift Register random 

number generators, also called Tausworthe generators, 

which work on linear recurrences modulo 2. Trinomial-

based generators have important statistical defects, but 

combining them can yield generators that are relatively 

fast and robust. Such combinations have been proposed 

and analyzed by Matsumoto and Wang [11, 12]. The 

generators given in are for 32-bit computers. Nowadays 

64-bit computers are becoming increasingly common and 

so it is important to have good generators designed to 

fully use the 64-bit words given by P. L’Ecuyer [6] The 

huge-period generators proposed thereafter were not quite 

optimal. New generators with better equidistribution and 

bit-mixing properties were required.  

A generator with a period of can be implemented using k 

flip-flops and k LUTs, and provides k random output bits 

each cycle. Despite these advantages, FPGA-optimized 

generators are not widely used in practice, as the process 

of constructing a generator for a given parameterization is 

time consuming, in terms of both developer man hours 

and CPU time. While it is possible to construct all 

possible generators ahead of time, the resulting set of 

cores would require many megabytes, and be difficult to 

integrate into existing tools and design flows. Faced with 

these unpalatable choices, engineers under time 

constraints understandably choose less efficient methods, 

such as combined Tausworthe generators [3] or parallel 

linear feedback shift registers (LFSRs). using cheap bit-

wise shift-registers to provide long periods and good 

quality without requiring expensive resources. The 

number of bits generated per cycle is chosen generally to 

meet the needs of the application. 

Permutation of the resulting outputs is given to the XOR 

gates. The output of the XOR gates are then given to the 

PIPO SRs, where the XOR gate outputs are shifted and 

thus random number generation takes place successfully. 

The simulations are performed in Model Sim 6.4a which 

is a tool and synthesized using Xilinx Plan Ahead Virtex5 

kit verified on the Spartan 3E kit and the programming is 

written using Verilog.  

The results that are obtained from the tools and the design 

summary obtained from Xilinx 8.1i are shown below. The 

initial seed is given as input. The seed is permuted. 

Random Number Generation: Types and Techniques 

Because randomness is so inherent in everyday life, many 

researchers have tried to either harvest or simulate its 

effect inside the digital realm. Before accomplishing this 

feat, however, many important questions need to be 

answered. What does it mean to be random? How does a 

person go about creating randomness, and how can he 

capture the randomness he encounters? How can someone 

know if an event or number sequence is random or not? 

Over generations, the answers to these questions have 

progressively been developed.  

This paper takes a look at the current solutions, and 

attempts to organize the methods for creating chaos. 

Defining Random It is impossible to appreciate a random 

number generator without first understanding what it 

means to be random. Developing a well-rounded 

definition of randomness can be accomplished by 

studying a random phenomenon, such as a dice roll, and 

exploring what qualities makes it random. To begin, 

imagine that a family game includes a die to make things 

more interesting. In the first turn, the die rolls a five. By 

itself, the roll of five is completely random. However, as 

the game goes on, the sequence of rolls is five, five, five, 

and five. The family playing the game will not take long 

to realize that the die they received probably is not 

random. 
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From this illustration, it is apparent that when discussing 

randomness, a sequence of random numbers should be the 

focus of the description, as opposed to the individual 

numbers themselves (Kenny, 2005). To make sure the 

next die the family buys is random, they roll it 200 times. 

This time, the die did not land on the same face every 

time, but half of the rolls came up as a one. This die 

would not be considered random either, because it has a 

disproportionate bias toward a specific number. To be 

random, the die should land on all possible values 

equally. In a third scenario, the dice manufacturer 

guarantees that now all its dice land on all numbers 

equally. Cautious, a family role this new die 200 times to 

verify. Although the numbers were hit uniformly, the 

family realized that throughout the entire experiment the 

numbers always followed a sequence: five, six, one, two, 

etc. Once again, the randomness of the die would be 

questioned. For the die to be accepted as random, it could 

not have any obvious patterns in a sequence of dice rolls.  

If it can be predicted what will happen next, or anywhere 

in the future, the die cannot truly be random. From the 

results of these dice illustrations a more formal definition 

of randomness can be constructed. A generally accepted 

and basic definition of a random number sequence is as 

follows: a random number sequence is uniformly 

distributed over all possible values and each number is 

independent of the numbers generated before it 

(Marsaglia,2005). A random number generator can be 

defined as any system that creates random sequences like 

the one just defined. Unfortunately, time has shown that 

the requirements for a random number generator change 

greatly depending on the context in which it is used.  

Objective 

The goal of this paper is the design, analysis and 

implementation of an easy-to-design, improved, low-

overhead, tunable PRNG for the FPGA platform. The 

following are our major contributions:  

1) We investigate the limitations of the BFD–PRNG [3] 

when implemented on a FPGA design platform. To solve 

the shortcomings, we propose an improved BFD–PRNG 

architecture suitable for FPGA based applications. To the 

best of our knowledge this is the first reported work 

which incorporates tunability in a fully digital PRNG.  

2) We analyze the modified proposed architecture 

mathematically and experimentally.  

3) Our experimental results strongly support the 

mathematical model proposed. The proposed PRNG has 

low hardware overhead, and the random bitstreams 

derived from the proposed PRNG passes all tests in the 

NIST statistical test suite. 

II LITERATURE REVIEW 

From the rigorous review of related work and published 

literature, it is observed that many researchers have 

designed random number generation by applying different 

techniques. Researchers have undertaken different 

systems, processes or phenomena with regard to design 

and analyze PRNG content and attempted to find the 

unknown parameters. A pseudorandom number generator 

(PRNG), is an algorithm for generating a sequence of 

numbers that approximates the properties of random 

numbers. These sequences are not truly random. 

Although sequences that are closer to truly random can be 

generated using hardware random number generators, 

pseudorandom numbers are important in practice for 

simulations (e.g., of physical systems with the Monte 

Carlo method), and are important in the practice of 

cryptography. Ray C. C. Cheung, Dong-U Lee, John D. 

Villasenor [1], presented an automated methodology for 

producing hardware-based random number generator 

(PRNG) designs for arbitrary distributions using the 

inverse cumulative distribution function (ICDF).  

The ICDF is evaluated via piecewise polynomial 

approximation with a hierarchical segmentation scheme 

that involves uniform segments and segments with size 

varying by powers of two which can adapt to local 

function nonlinearities. Analytical error analysis is used 

to guarantee accuracy to one unit in the last place (ulp). 

Compact and efficient PRNGs that can reach arbitrary 

multiples of the standard deviation can be generated. For 

instance, a Gaussian PRNG based on our approach for a 

Xilinx Virtex-4 XC4VLX100-12 field programmable gate 

array produces 16-bit random samples up to 8.2delta. It 

occupies 487 slices, 2 block-RAMs, and 2 DSP-blocks.  

A normal LFSR could only generate one random bit per 

cycle. As multi-bits is required to form a random number 

in most applications, Multi-LFSRs architecture is used to 

implement a UPRNG. This means 32 different LFSRs are 

needed in a 32- bit output UPRNG. But Leap-Ahead 

architecture could avoid this and generate one multi-bits 

random number per cycle using only one LFSR. The 

Leap-Ahead architecture consumes less than 10% of 
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slices which the Multi-LFSR architecture consumes. One 

of the reasons for this is that the Leap-Ahead architecture 

has only 1LFSR in the UPRNG hardware, while the 

Multi-LFSR architecture has 18. The other reason is that 

every register in the UPRNG has to be initialed separately 

when the circuit is restarted, and the logic for this is 

complicated.  

As the Multi-LFSR architecture has 18×18registers, while 

the Leap-Ahead architecture has only 23registers, it needs 

more slices for the initializing function. By implementing 

the Leap-Ahead LFSR architecture and Multi-LFSR 

architecture of both Galois type and Fibonacci type on 

Xilinx Vertex 4 FPGA, we acquire the conclusion that, 

with only very little lost in speed, Leap-Ahead LFSR 

architecture consumes only 10% slices of what the 

MultiLFSR architecture does to generate the random 

numbers that have the same period.  

Cellular Automata (CA) have been found to make 

good pseudo-random number generators (PRNGs), and 

these CA-based PRNGs are well suited for 

implementation on Field Programmable Gate Arrays 

(FPGAs). To improve the quality of the random numbers 

that are generated, the basic CA structure is enhanced in 

two ways. First, the addition of a super-rule to each CA 

cell is considered. The overviews of the design of linear 

feedback shift register (LFSRs) and cellular automata 

(CA), followed by a review of related works that have 

utilized LFSR and CA for generating random numbers. 

Therefore, evaluated the performance of CA-based 

PRNGs suitable for implementation on FPGAs. Synthesis 

results for the Xilinx Spartan 3E FPGA give a good idea 

of the relative resources required for each configuration.  

Pawel Dabal, Ryszard Pelka [4] presented FPGA 

Implementation of Chaotic Pseudo-Random Bit 

Generators‖ Modern communication systems (including 

mobile systems) require the use of advanced methods of 

information protection against unauthorized access. 

Therefore, one of the essential problems of modern 

cryptography is the generation of keys having relevant 

statistical properties. In recent years, the cryptographers 

pay an increasing attention to digital systems based on 

chaos theory. Carlos Arturo Gayoso, C. González, L. 

Arnone, M. Rabini, Jorge Castiñeira Moreira, [5] 

presented ―Pseudorandom Number Generator Based on 

the Residue Number System and its FPGA 

Implementation‖ Residue Number System (RNS), which 

allows us to design a very fast circuit that has a very 

different way of operating with respect to other 

generators.  

PSEUDORANDOM number generators (PRNG) 

have many applications among diverse fields such as 

cryptography [1], communications [2], or procedural 

generation [3]. Specifically, in the field of 

instrumentation and measurements, PRNGs are needed in 

many applications such as statistical sampling, Monte 

Carlo simulations, evaluating the immunity to noise of 

digital systems and, in general, testing of physical, 

biological, and electrical systems: code density tests and 

determination of Wiener and Volterra kernels in nonlinear 

systems [4], [5]. Some of the most commonly used 

PRNGs are based on linear congruential generators 

(LCG) or linear feedback shift registers (LFSR). Many of 

these systems, however, present some correlations or 

short periods, which make them unsuitable for many 

applications [6]. In this context, chaos-based 

  

Fig. 1. Overall scheme of a generic PRNG 

PRNGs have arisen as a good alternative, thanks to their 

properties of ergodicity, and randomlike behavior [7]. In 

this paper, we propose a random generator based on the 

logistic map that, in order to improve its statistical 

properties, dynamically changes its chaotic parameter. 

The system has been implemented in a Virtex 7 field-

programmable gate array (FPGA), using 510 lookup 

tables (LUTs) and 120 registers. To test the good 

statistical properties of the proposed generator, its 

generated sequences have been subjected to the National 

Institute of Standards and Technology (NIST) tests. The 

sequences have passed all of these tests, proving that they 

are undistinguishable from a truly random sequence. The 

main contribution of this paper is the proposal of a novel 

chaos-based PRNG that:  

1) Offers better randomness results than other PRNGs 

commonly used in simulations such as LCGs and LFSRs;  
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2) Requires a very small amount of resources to be 

implemented on an FPGA compared to other previously 

proposed chaos-based PRNGs. 

I. PRNG ALGORITHM  

A. Generic Structure of a Chaotic PRNG A PRNG is an 

algorithm that, starting with a seed, by using a 

transformation function, generates a sequence that 

appears to be random, and its length is much bigger than 

the seed length (Fig. 1). A chaotic PRNG can be easily 

implemented by using a digitized chaotic map xi+1 = f 

(xi,γ) (1) where each xi is an element of the sequence and 

γ is a constant parameter that determines the behavior of 

the system. Using a map of this kind, starting from a seed 

composed by x0 and γ , a sequence of elements {xi} is 

generated. Since each element is represented by a certain 

number of bits, it is possible to use all of them to build a 

binary random generator. However, there can be 

correlations among the bits within an element xi . 

Therefore, to obtain better statistical properties, 

only a few bits of each xi are usually used to build the 

random sequences, typically the least significant bits 

(LSBs) since they present a low correlation. In this paper, 

we have based the algorithm on the logistic map, given by 

xi+1 = γ xi(1 − xi) (2) where in order to work on the 

chaotic region, necessary for obtaining good random 

properties, the values of the parameter γ must be in the 

interval [3.57, 4]. If γ < 3.57, fixed points or periodic 

orbits (not suitable for PRNG applications) are obtained 

and, if γ > 4, the orbits usually diverge [8]. This map has 

been chosen due to its simplicity and its randomlike 

behavior that has been widely studied in the past decades 

[9]. 

B. Randomness Degradation Caused by the 

Digitization of the System  

When a chaotic map such as the logistic map is digitized 

with a word length of n bits, each xi can only take 2n 

different values. Furthermore, for a given γ , the value of 

a certain xi determines the value of the next element xi+1. 

Therefore, after a maximum number of 2n iterations, the 

sequence will repeat itself. Although the maximum period 

is 2n, much shorter periods, on the order of ∼2n/2, are 

usually found of [10]. These short-period sequences fail 

most of the NIST randomness tests [8]. Furthermore, if a 

big number of random numbers were needed for signal 

processing or simulation, the sequence would start to 

repeat itself which could affect the simulation results. A 

possible strategy to reduce this problem consists on using 

bigger word lengths. For example, a word length of 500 

bits is used in [11]. Unfortunately, this approach requires 

to use a big amount of extra resources to obtain longer 

periods. In this paper, this issue has been solved using an 

alternative approach that improves the random properties 

of a chaotic PRNG by using a small number of extra 

resources. 

C. Random-Enhancement Proposal  

The random-enhancement approach used in this paper 

consists of using several values of γ : γ1, γ2,...γm instead 

of a single one. The sequence {xi} is generated by 

changing the value of γ according to a sequence partition 

{ki}. With this method, the first k1 elements are obtained 

by xi = f (xi−1, γ1), the next k2 elements are obtained as 

xi = f (xi−1, γ2), and so on. After having used all of the 

values of γi and having generated m i=1 ki elements in 

total, the initial value of γ and γ1 is reused, continuing the 

process in a circular way. Furthermore, it has been 

applied to a simpler chaotic map than the skew tent map 

(used in [16] and [17]), the logistic map, obtaining a cost-

effective high-performance PRNG. 

 

Fig. 2. Diagram of the enhanced PRNG. A FIFO is used 

to store the values of each γi . This is done with the config 

data signal. Write enable signal allows the system to write 

the value of config data inside the FIFO. Finally, read 

enable and load enable allow to read the next value of γi 

from the FIFO and load it into the seed register. The 

“config. data,” “read,” “write,” and “load” enable inputs 

are driven by an external control block (not shown in the 
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picture) that has been designed to follow the proposed 

algorithm. 

 

The proposed system has been fully implemented in an 

FPGA and exhaustively analyzed. A scheme of the 

enhanced PRNG is shown in Fig. 2. 

III PROPOSED SYSTEM 

Design Overview 

Tunability is established by setting the DCM 

parameters on–the– fly using DPR capabilities using DRP 

ports. This capability provides the design greater 

flexibility than the ring oscillator-based BFD-PRNG. The 

difference in the frequencies of the two generated clock 

signals is captured using a DFF. The DFF sets when the 

faster oscillator completes one cycle more than the slower 

one (at the beat frequency interval). A counter is driven 

by one of the generated clock signals, and is reset when 

the DFF is set. Effectively, the counter increases the 

throughput of the generated random numbers. The last 

three LSBs of the maximum count values reached by the 

count were found to show good randomness properties. 

 

Fig. 3: Overall architecture of proposed Digital 

Clock Manager based tunable BFD–PRNG 

Fig. 3 shows the overall architecture of the proposed 

PRNG. In place of two ring oscillators, two DCM 

modules generate the oscillation waveforms. The DCM 

primitives are parameterized to generate slightly different 

frequencies, by adjusting two design parameters M 

(Multiplication Factor) and D (Division Factor). In the 

proposed design, the source of randomness is the jitter 

presented in the DCM circuitry. The DCM modules allow 

greater designer control over the clock waveforms, and 

their usage eliminates the need for initial calibration [3].  

 The initial value of the LFSR is called the seed, 

and because the operation of the register is deterministic, 

the stream of values produced by the register is 

completely determined by its current (or previous) state. 

Likewise, because the register has a finite number of 

possible states, it must eventually enter a repeating cycle. 

However, an LFSR with a wellchosen feedback function 

can produce a sequence of bits which appears random and 

which has a very long cycle. Applications of LFSRs 

include generating pseudo-random numbers, pseudo-

noise sequences, fast digital counters, and whitening 

sequences. Both hardware and software implementations 

of LFSRs are common. 

 

Fig 4 Galois LFSRs 

 The feedback tap numbers correspond to a 

primitive polynomial in the table so the register cycles 

through the maximum number of 256 states excluding the 

all-zeroes state. The bit positions that affect the next state 

are called the taps. In the diagram the taps are [7,6,4,3]. 

The rightmost bit of the LFSR is called the output bit. The 

taps are XOR'd sequentially with the output bit and then 

fed back into the leftmost bit. The sequence of bits in the 

rightmost position is called the output stream. The 

arrangement of taps for feedback in an LFSR can be 

expressed in finite field arithmetic as a polynomial mod 2. 

This means that the coefficients of the polynomial must 

be 1's or 0's.  

 This is called the feedback polynomial or 

reciprocal characteristic and 3rd bits (as shown), the 

feedback polynomial is X 7 +X6 +X4 +X3 +1 The 'one' 

in the polynomial does not correspond to a tap – it 

corresponds to the input to the first bit (i.e. x 0, which is 

equivalent to 1). The powers of the terms represent the 

tapped bits, counting from the left. The first and last bits 

are always connected as an input and output tap 
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respectively. The LFSR is maximal-length if and only if 

the corresponding feedback polynomial is primitive. This 

means that the following conditions are necessary (but not 

sufficient):  The number of taps should be even.  The set 

of taps – taken all together, not pairwise (i.e. as pairs of 

elements) – must be relatively prime. In other words, 

there must be no divisor other than 1 common to all taps.  

Galois LFSRs: 

Named after the French mathematician Évariste Galois, 

an LFSR in Galois configuration, which is also known as 

modular, internal XORs as well as one-to-many LFSR, is 

an alternate structure that can generate the same output 

stream as a conventional LFSR (but offset in time). In the 

Galois configuration, when the system is clocked, bits 

that are not taps are shifted one position to the right 

unchanged. The taps, on the other hand, are XOR'd with 

the output bit before they are stored in the next position. 

The new output bit is the next input bit. The effect of this 

is that when the output bit is zero all the bits in the 

register shift to the right unchanged, and the input bit 

becomes zero. When the output bit is one, the bits in the 

tap positions all flip (if they are 0, they become 1, and if 

they are 1, they become 0), and then the entire register is 

shifted to the right and the input bit becomes 1. 

 

Fig 5 Galois register LFSRs 

To generate the same output stream, the order of the taps 

is the counterpart (see above) of the order for the 

conventional LFSR, otherwise the stream will be in 

reverse. Note that the internal state of the LFSR is not 

necessarily the same.  

The Galois register shown has the same output 

stream as the Fibonacci register in the first section. A 

time offset exists between the streams, so a different start 

point will be needed to get the same output each cycle. 

Galois LFSRs do not concatenate every tap to produce the 

new input (the XOR'ing is done within the LFSR and no 

XOR gates are run in serial, therefore the propagation 

times are reduced to that of one XOR rather than a whole 

chain), thus it is possible for each tap to be computed in 

parallel, increasing the speed of execution.  In a software 

implementation of an LFSR, the Galois form is more 

efficient as the XOR operations can be implemented a 

word at a time: only the output bit must be examined 

individually. 

It is a pseudorandom number generator proposed 

in 1986by Lenore Blum, Manuel Blum and Michael Shub 

(Blum et al., 1986). Blum Blum Shub takes the form: 

Xn+1 = Xn2mod n Where n=p x q is the product of two 

large primes p and q. At each step of the algorithm, some 

output is derived from xn+1; the output is commonly the 

bit parity of Xn+1 or one or more of the least significant 

bits of Xn+1. The two primes, p and q, should both be 

congruent to 3 (mod 4) . Steps for executing Blum Blum 

Shub Generator algorithm:  

The Blum Blum Shub Generator is known to be 

the cryptographically secure pseudo random number 

generator (CSPRNG). The algorithm for BBS generator is 

as follows:  Select two big prime numbers p and q, such 

that both the numbers leave a remainder of 3 when 

divided by 4.  Choose n = p * q Choose seeds, such that s 

is relatively prime to n which means that neither p nor q is 

a factor of s.  Xo = s2 mod n  The consequent values are 

generated according to the formula Xi = (Xi1)2mod n  A 

sequence of binary digits is produced according to the 

formula Bi= Xi mod2 The output sequence is B1, B2, B3, 

B4…… Pipelining Introduction  

a) Pipelining  Comes from the idea of a water 

pipe: continue sending water without waiting the water in 

the pipe to be out  leads to a reduction in the critical path  

Either increases the clock speed (or sampling speed) or 

reduces the power consumption at same speed in a DSP 

system 

 b) Parallel Processing  Multiple outputs are 

computed in parallel in a clock period  The effective 

sampling speed is increased by the level of parallelism  

Can also be used to reduce the power consumption water 

pipe An instruction pipeline is a technique used in the 

design of computers to increase their instruction 

throughput (the number of instructions that can be 

executed in a unit of time).  

The first step is always to fetch the instruction 

from memory; the final step is usually writing the results 

of the instruction to processor Registers or to memory. 

Pipelining seeks to let the processor work on as many 

instructions as there are dependent steps, just as an 
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assembly line builds many vehicles at once, rather than 

waiting until one vehicle has passed through the line 

before admitting the next one. Just as the goal of the 

assembly line is to keep each assembler productive at all 

times, pipelining seeks to keep every portion of the 

processor busy with some instruction. Pipelining lets the 

computer's cycle time be the time of the slowest step, and 

ideally lets one instruction complete in every cycle. 

A) The LUT-SR PRNG The LUT-SR generators provide 

a middle performance between the LUT-Opt [1] and 

LUT-FIFO generator [1], by Implementation of PRNG in 

FPGA using Efficient Resource Utilization 91 using 

cheap bit-wise shift-registers to provide long periods and 

good quality without requiring expensive resources. The 

number of bits generated per cycle is chosen generally to 

meet the needs of the application. 

B) Algorithm LUT-SR generator family uses a short and 

precise algorithm for expanding the full PRNG structure. 

The algorithm [1] uses r, t and k with period 2 − 1 where r 

is the number of random output bits generated per cycle, t 

is the XOR gate input count, k is the maximum shift 

register length. The parameters (r, t, k) describe the 

properties of the generator in terms of application 

requirements and architectural restrictions. The 

algorithmic steps are as follows, • Initial loading Initially 

the loading step is done by giving a seed. For rbit 

generator the seed size is r. As soon as the seed is given 

the bits are permuted. Any seed other than “all-zero state” 

can be given. The seed is also known as initial seed. All 

zero state condition cancels random number generation 

and makes the generator idle [1]. 

  Permutation The simple dependency between 

adjoining bits is masked up using a final output 

permutation. The model is shown in Fig.1.  Loading XOR 

connections, the permuted outputs are given as inputs to 

XOR gates. The number of inputs should not exceed r. 

The number of rounds should be t or t-1[1], where t is the 

number of XOR gates given. Each permuted output bit is 

used at most t times. Some bits will be assigned the same 

FIFO bit in multiple rounds. The XOR- ed outputs are 

given to the PIPO SR and fed back to the FIFO 

extensions [1]. PIPO SR Universal shift register performs 

shifting operation in addition to the parallel-in-parallel-

out function.  

 At a time, multiple input processing happens in 

Parallel-in-parallelout-shift register. The purpose of the 

parallel-in parallel-out shift register is to take in parallel 

data, shifts it, then output the data [1]. FIFO Extension 1-

bit shift registers are used. Bitwise shift registers improve 

the rate of mixing [1]. For 8-bit PRNG, the length of 

FIFO SR should not exceed k, where k=8.The length of 

the shift register is given by the number of flip-flops. The 

outputs from PIPO SR are fed back to FIFO or SISO SR. 

A FIFO is a sequential data buffer that is very easy to use. 

Very small FIFOs can be implemented with flip-flops or 

register arrays, sometimes even with shift registers [1].  

The resulting sequence is fed back to the SISO 

SR or FIFO SR. Permutation of the resulting outputs is 

given to the XOR gates. The output of the XOR gates are 

then given to the PIPO SRs, where the XOR gate outputs 

are shifted and thus random number generation takes 

place successfully. The Random Number Generation is 

performed as per the methodology.  

The simulations are performed in Model Sim 6.4a 

which is a tool and synthesized using Xilinx PlanAhead 

Virtex5 kit verified on the Spartan 3E kit and the 

programming is written using Verilog. The results that are 

obtained from the tools and the design summary obtained 

from Xilinx 8.1i are shown below. The initial seed is 

given as input. The seed is permuted. The results for 8-bit 

PRNG are discussed below. The same scheme is carried 

out for 64-bit PRNG. The permuted bits’ output is given 

to the XOR gates. For 8-bit PRNG the number of XOR 

gates is 8(t=8). The concept of permutation is used up for 

improving randomness among bits and thus employing 

unpredictability. The first and last bits are interchanged. 

The same concept of permutation is used for different bit 

PRNGs. The permuted outputs are fed into the XOR gates 

and for remaining inputs to XOR gates round basis is 

used. Hence, the obtained XOR gate output bits are fed in 

a parallel basis into the PIPO SR.  resulting outputs 

generate the random number cycle. The cycle is fed into 

the SISO SR [FIFO] of varying lengths (length=k).  

 The length should not exceed r. As each bit 

crosses the flip-flop, it will be set to zero. Hence, random 

number generation takes place. The resulting random 

numbers are generated such that their period is 2r -1. If 

the number of bits is 16, then the period is 216-1. The 

count of all zero state is reduced since the all zero state 

leads to idle condition. The period is the duration after 

which the entire sequence goes on repeating based on the 

initial seed and the permutations. So, the period for 32, 
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64, 128 and 512-bit PRNGs are 232-1, 264-1, 2128-1, 

2512-1. 

Tuning Circuitry  

 

Fig. 6: Architecture of tuning circuity. 

The architecture of the tuning circuitry is shown 

in Fig. 3. The target clock frequency is determined by the 

set of parameter values actually selected. The random 

values reached by the counter, as well as the jitter are 

related to the chosen parameters M and D (details are 

discussed in Section IV). This makes it possible to tune 

the proposed PRNG using the predetermined stored M 

and D values. As unrestricted DPR has been shown to be 

a potential threat to the circuit [6], the safe operational 

value combinations of the D and M parameters for each 

DCM are predetermined during the design time, and 

stored on an on-chip Block RAM (BRAM) memory block 

in the FPGA.  

There are actually two different options for the 

clock generators – one can use the Phase Locked Loop 

(PLL) hard macros available on Xilinx FPGAs, or the 

DCMs. We next describe analytical and experimental 

results which compelled us to choose DCM in favor of 

the PLL modules for clock waveform generation. 

Circuit Behavior with PLL as Clock Generator  

We first consider the operational principle for the 

PLL, and its feasibility as a component of the proposed 

PRNG. The Xilinx PLL synthesizes a clock signal whose 

frequency is given by: FCLKFX = FCLKIN · M D (1) 

where FCLKIN is the frequency of input clock signal, and 

M and D are the multiplication and division factors 

previously mentioned. Values of M and D can be varied 

to generate the required clock frequency. The two PLLs 

can be parametrized with the necessary set of (M, D) 

values to generate two slightly different clock 

frequencies. Without loss of generality, assume P LLA is 

set up to be slightly faster than P LLB, i.e. the time 

periods are related by TA < TB. On reaching the beat 

frequency interval (say, n clock cycles), by definition, P 

LLA completes one cycle more than the slower one.  

The following equation depicts this simple 

model: TA TB = N N + 1 (2) N = 2.n, where n is the 

estimated maximum counter value. For the first n clock 

cycles, the counter does not increment, and then 

increments by one for each of the next n clock cycles. 

Hence, the maximum counter values reached is n. Then, 

Eqn. (2) leads to: n = TB /2(TB − TA) (3) Using design 

configuration parameters (M and D) one of the oscillators 

is made to run faster than the other. This is done in order 

to limit the range of counter values produced.  

If both the oscillators were configured to run at 

the same frequency we may get random numbers, but the 

maximum counter value produced will be very high 

(theoretically infinite) as per Eqn. (3). In other words, the 

latency of the circuit will be very high, since the counter 

sets and resets only after reaching a very large count 

value. When the Xilinx PLLs are used as clock 

generators, the predicted and observed counter values for 

all combinations of (M, D) values remain the same. This 

confirms that the Xilinx PLL instances demonstrate close-

toideal behavior and are quasi-identical, and have 

negligible jitter between the waveforms generated by 

them. Since the BFDPRNG is critically dependent on the 

presence of jitter between the two generated clock 

waveforms, PLLs seem unsuitable as components of the 

proposed PRNG. Hence, next we examine the DCM as 

clock generators. 

Circuit Behavior with DCM as Clock Generator  

Without loss of generality, the clock signals 

produced by one of the DCM (say, DCMA) is slightly 

faster than the other (DCMB), implying TA < TB. This is 

ensured by assigning the design parameters M and D as in 

Eqn. (7). More details are discussed in Section IV-C. 

Timing diagrams of the DCM clock outputs and the 

resultant DFF response is shown in Fig. 4.  

 

Fig. 7: Timing diagram of DCM output waveforms 

and the corresponding and DFF response. 

Let N be the number of clock cycles of the slower 

clock signal in which the faster clock signal completes 

exactly one cycle more. Then, tA [N + 1] = (N + 1) TA + 

€A(4) and tB [N] = NTB + €B (5) where €A and €B are the 

uncertainties due to jitter in DCMA and DCMB 
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respectively. The uncertainties due to jitter in DCMA and 

DCMB are different, this is because the DCMs are 

designed with distinct modeling parameters M and D. The 

corresponding jitter for each of the DCMs used in the 

proposed design is presented in Table III. For example, 

consider the configuration presented in Sl.No. 1. In this 

case, DCMA is configured with M=15 and D=31 and 

DCMB is configured with M=14 and D=29. This results 

in peak-to-peak jitter of 0.600 ns and 0.568 ns for DCMA 

and DCMB respectively. Of course, we also have: tA[N + 

1] = tB[N].  

Assuming there is no metastability for the DFF if 

signal transitions occur in the setup-hold timing window 

around its driving clock edge (the metastability issue can 

be avoided by cascaded DFF combination), the transition 

time (td) of the DFF, the time interval after which it sets 

(i.e. the counter driven by the DFF resets), is estimated 

by: td = tA[N + 1] + tB[N] 2 = (N + 1)TA + NTB + €A + €B 

2 (6) From Eqn. (6), the transition time of DFF is a 

random process. The output of the DFF, i.e. the time 

interval (td) after which the counter resets, is thus a 

random function. As a result, the count value obtained 

when the counter resets is also a random quantity.  

IV SIMULATION RESULTS 

Power report 

 

Timing report 

 

Design Summary 

 

RTL Schematic 

 

SIMULATION RESULTS 

 

V CONCLUSION 

We have presented an improved fully digital tunable 

PRNG for FPGA based applications, based on the 

principle of Beat Frequency Detection and clock jitter, 

and with in-built error correction capabilities. The PRNG 

utilizes this tunability feature for determining the degree 

of randomness, thus providing a high degree of flexibility 

for various applications.  

VI FUTURE SCOPE 

Presently, we are dealing with the 4-digit numeric OTP 

system in this project. So, in order to improve the 

security, we need to develop an Alpha numeric (symbol 

base) OTP systems.  
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