
 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 89

DESIGN OF CHAOS BASED PSEUDORANDOM NUMBER

GENERATOR USING BEAT FREQUENCY DETECTION
1
SHAIK RAJIYA SULTHANA,

2
D.MOHAN AJAY,

1
 M. Tech scholar, Dept of VLSI, Jntu Kakinada,AP India, 9959989378, rajiyashaik124@gmail.com.

2
ASSISTANT PROFESSOR, Dept of VLSI, Jntu Kakinada,AP India, 9177441569 mohanajay.777@gmail.com. ,

-- ***--

Abstract: - Random numbers are used in a extensive variety of packages. Pseudo random variety mills are gradual and

high-priced for many programs whilst pseudo random wide variety mills (PRNG) suffice for most packages. Although a

majority of random wide variety generators had been applied in software program degree, growing call for exists for

hardware implementation because of the arrival of quicker and excessive density Field Programmable Gate Arrays

(FPGA). FPGAs make it possible to implement complex structures, including numerical calculations, genetic programs,

simulation algorithms and many others. at hardware level.

This paper discusses in element the hardware implementation of several PRNGs and their characteristics. Random

range generator is needed drastically by means of many applications like cryptography, simulation, numerical analysis,

textual content-to-speech and so forth. Most C libraries have a couple of library routines for initializing, after which

producing random numbers. For parametric speech synthesis application, a random quantity generator is needed to

produce noise samples. Therefore, a need has been felt for the design of a committed hardware for random number

generator that generates one random variety per cycle so that text-to speech conversion is finished in actual time.

 ---***---

I INTRODUCTION

Pseudo Random Number Generators (PRNGs) have

become indispensable component in many cryptographic

systems, including PIN/password generation,

authentication protocols, key generation, random padding

and nonce generation. PRNG circuits utilize a non-

deterministic random process, usually in the form of

electrical noise, as a basic source of randomness. Along

with the noise source, a noise harvesting mechanism to

extract the noise, and a post-processing stage to provide a

uniform statistical distribution are other important

components of the PRNG. Our focus is to design an

improved FPGA based PRNGs, using purely digital

components. Using digital building blocks for PRNGs has

the advantage that the designs are relatively simple and

well-suited to the FPGA design flow, as they can suitably

leverage the CAD software tools available for FPGA

design. However, digital circuits exhibit comparatively

limited number of sources of random noise, e.g.

metastability of circuit elements, frequency of free

running oscillators and jitters (random phase shifts) in

clock signals. As would be evident, our proposed PRNG

circuit utilizes the frequency difference of two oscillators

and oscillator jitter as sources of randomness.

Reconfigurable devices have become an integral part of

many embedded digital systems, and predicted to become

the platform of choice for general computing in near

future. From being mainly prototyping devices,

reconfigurable systems including FPGAs are being

widely employed in cryptographic applications, as they

can provide acceptable to high processing rate at much

lower cost and faster design cycle time. Hence, many

embedded systems in the domain of security require a

high quality PRNG implementable on FPGA as a

component. We present a PRNG for Xilinx FPGA based

applications, which has a tunable jitter control capability

based on DPR capabilities available on Xilinx FPGAs.

The major contribution of this paper is the development

of an architecture which allows on–the–fly tunabilty of

statistical qualities of a PRNG by utilizing DPR

capabilities of modern FPGAs for varying the DCM

modeling parameters. To the best of our knowledge this is

the first reported work which incorporates tunability in a

PRNG.

This approach is only applicable for Xilinx FPGAs which

provide programmable clock generation mechanism, and

capability of DPR.DPR is a relatively new enhancement

in FPGA technology, whereby modifications to

predefined portions of the FPGA logic fabric is possible

on–the–fly, without affecting the normal functionality of

the FPGA. Xilinx Clock Management Tiles (CMTs)

contain Dynamic Reconfiguration Port (DRP) which

allow DPR to be performed through much simpler means

mailto:rajiyashaik124@gmail.com

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 90

[1]. Using DPR, the clock frequencies generated can be

changed on–the–fly by adjusting the corresponding DCM

parameters. DPR via DRP is an added advantage in

FPGAs as it allows the user to tune the clock frequency as

per the need. Design techniques exist to prevent any

malicious manipulations via DPR which in other ways

may detrimentally affect the security of the system [2].

Mersenne Twister (MT) is a widely-used fast

pseudorandom number generator (PRNG), designed by

Matsumoto [8]. More CPU time is required for

initialization than for generation in MT and hence, next to

Mersenne Twisters, WELL generators were introduced by

Panneton [9]. CPUs for personal computers later,

acquired new features of SIMD operations (i.e., 128- bit

operations) and multi-stage pipelines.128-bit based

PRNG was proposed which was named as SIMD-oriented

Fast Mersenne Twister (SFMT), which is analogous to

MT using SIMD operations proposed by Saito[7].

Tsoi[10] mentioned that if the function call is avoided,

WELL may be slower than MT for some CPUs. The

SFMT pseudorandom number generator is a very fast

generator with satisfactorily high-dimensional

equidistribution property. Then Random number

generators based on linear recurrences modulo 2 were

introduced. Linear Feedback Shift Register random

number generators, also called Tausworthe generators,

which work on linear recurrences modulo 2. Trinomial-

based generators have important statistical defects, but

combining them can yield generators that are relatively

fast and robust. Such combinations have been proposed

and analyzed by Matsumoto and Wang [11, 12]. The

generators given in are for 32-bit computers. Nowadays

64-bit computers are becoming increasingly common and

so it is important to have good generators designed to

fully use the 64-bit words given by P. L’Ecuyer [6] The

huge-period generators proposed thereafter were not quite

optimal. New generators with better equidistribution and

bit-mixing properties were required.

A generator with a period of can be implemented using k

flip-flops and k LUTs, and provides k random output bits

each cycle. Despite these advantages, FPGA-optimized

generators are not widely used in practice, as the process

of constructing a generator for a given parameterization is

time consuming, in terms of both developer man hours

and CPU time. While it is possible to construct all

possible generators ahead of time, the resulting set of

cores would require many megabytes, and be difficult to

integrate into existing tools and design flows. Faced with

these unpalatable choices, engineers under time

constraints understandably choose less efficient methods,

such as combined Tausworthe generators [3] or parallel

linear feedback shift registers (LFSRs). using cheap bit-

wise shift-registers to provide long periods and good

quality without requiring expensive resources. The

number of bits generated per cycle is chosen generally to

meet the needs of the application.

Permutation of the resulting outputs is given to the XOR

gates. The output of the XOR gates are then given to the

PIPO SRs, where the XOR gate outputs are shifted and

thus random number generation takes place successfully.

The simulations are performed in Model Sim 6.4a which

is a tool and synthesized using Xilinx Plan Ahead Virtex5

kit verified on the Spartan 3E kit and the programming is

written using Verilog.

The results that are obtained from the tools and the design

summary obtained from Xilinx 8.1i are shown below. The

initial seed is given as input. The seed is permuted.

Random Number Generation: Types and Techniques

Because randomness is so inherent in everyday life, many

researchers have tried to either harvest or simulate its

effect inside the digital realm. Before accomplishing this

feat, however, many important questions need to be

answered. What does it mean to be random? How does a

person go about creating randomness, and how can he

capture the randomness he encounters? How can someone

know if an event or number sequence is random or not?

Over generations, the answers to these questions have

progressively been developed.

This paper takes a look at the current solutions, and

attempts to organize the methods for creating chaos.

Defining Random It is impossible to appreciate a random

number generator without first understanding what it

means to be random. Developing a well-rounded

definition of randomness can be accomplished by

studying a random phenomenon, such as a dice roll, and

exploring what qualities makes it random. To begin,

imagine that a family game includes a die to make things

more interesting. In the first turn, the die rolls a five. By

itself, the roll of five is completely random. However, as

the game goes on, the sequence of rolls is five, five, five,

and five. The family playing the game will not take long

to realize that the die they received probably is not

random.

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 91

From this illustration, it is apparent that when discussing

randomness, a sequence of random numbers should be the

focus of the description, as opposed to the individual

numbers themselves (Kenny, 2005). To make sure the

next die the family buys is random, they roll it 200 times.

This time, the die did not land on the same face every

time, but half of the rolls came up as a one. This die

would not be considered random either, because it has a

disproportionate bias toward a specific number. To be

random, the die should land on all possible values

equally. In a third scenario, the dice manufacturer

guarantees that now all its dice land on all numbers

equally. Cautious, a family role this new die 200 times to

verify. Although the numbers were hit uniformly, the

family realized that throughout the entire experiment the

numbers always followed a sequence: five, six, one, two,

etc. Once again, the randomness of the die would be

questioned. For the die to be accepted as random, it could

not have any obvious patterns in a sequence of dice rolls.

If it can be predicted what will happen next, or anywhere

in the future, the die cannot truly be random. From the

results of these dice illustrations a more formal definition

of randomness can be constructed. A generally accepted

and basic definition of a random number sequence is as

follows: a random number sequence is uniformly

distributed over all possible values and each number is

independent of the numbers generated before it

(Marsaglia,2005). A random number generator can be

defined as any system that creates random sequences like

the one just defined. Unfortunately, time has shown that

the requirements for a random number generator change

greatly depending on the context in which it is used.

Objective

The goal of this paper is the design, analysis and

implementation of an easy-to-design, improved, low-

overhead, tunable PRNG for the FPGA platform. The

following are our major contributions:

1) We investigate the limitations of the BFD–PRNG [3]

when implemented on a FPGA design platform. To solve

the shortcomings, we propose an improved BFD–PRNG

architecture suitable for FPGA based applications. To the

best of our knowledge this is the first reported work

which incorporates tunability in a fully digital PRNG.

2) We analyze the modified proposed architecture

mathematically and experimentally.

3) Our experimental results strongly support the

mathematical model proposed. The proposed PRNG has

low hardware overhead, and the random bitstreams

derived from the proposed PRNG passes all tests in the

NIST statistical test suite.

II LITERATURE REVIEW

From the rigorous review of related work and published

literature, it is observed that many researchers have

designed random number generation by applying different

techniques. Researchers have undertaken different

systems, processes or phenomena with regard to design

and analyze PRNG content and attempted to find the

unknown parameters. A pseudorandom number generator

(PRNG), is an algorithm for generating a sequence of

numbers that approximates the properties of random

numbers. These sequences are not truly random.

Although sequences that are closer to truly random can be

generated using hardware random number generators,

pseudorandom numbers are important in practice for

simulations (e.g., of physical systems with the Monte

Carlo method), and are important in the practice of

cryptography. Ray C. C. Cheung, Dong-U Lee, John D.

Villasenor [1], presented an automated methodology for

producing hardware-based random number generator

(PRNG) designs for arbitrary distributions using the

inverse cumulative distribution function (ICDF).

The ICDF is evaluated via piecewise polynomial

approximation with a hierarchical segmentation scheme

that involves uniform segments and segments with size

varying by powers of two which can adapt to local

function nonlinearities. Analytical error analysis is used

to guarantee accuracy to one unit in the last place (ulp).

Compact and efficient PRNGs that can reach arbitrary

multiples of the standard deviation can be generated. For

instance, a Gaussian PRNG based on our approach for a

Xilinx Virtex-4 XC4VLX100-12 field programmable gate

array produces 16-bit random samples up to 8.2delta. It

occupies 487 slices, 2 block-RAMs, and 2 DSP-blocks.

A normal LFSR could only generate one random bit per

cycle. As multi-bits is required to form a random number

in most applications, Multi-LFSRs architecture is used to

implement a UPRNG. This means 32 different LFSRs are

needed in a 32- bit output UPRNG. But Leap-Ahead

architecture could avoid this and generate one multi-bits

random number per cycle using only one LFSR. The

Leap-Ahead architecture consumes less than 10% of

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 92

slices which the Multi-LFSR architecture consumes. One

of the reasons for this is that the Leap-Ahead architecture

has only 1LFSR in the UPRNG hardware, while the

Multi-LFSR architecture has 18. The other reason is that

every register in the UPRNG has to be initialed separately

when the circuit is restarted, and the logic for this is

complicated.

As the Multi-LFSR architecture has 18×18registers, while

the Leap-Ahead architecture has only 23registers, it needs

more slices for the initializing function. By implementing

the Leap-Ahead LFSR architecture and Multi-LFSR

architecture of both Galois type and Fibonacci type on

Xilinx Vertex 4 FPGA, we acquire the conclusion that,

with only very little lost in speed, Leap-Ahead LFSR

architecture consumes only 10% slices of what the

MultiLFSR architecture does to generate the random

numbers that have the same period.

Cellular Automata (CA) have been found to make

good pseudo-random number generators (PRNGs), and

these CA-based PRNGs are well suited for

implementation on Field Programmable Gate Arrays

(FPGAs). To improve the quality of the random numbers

that are generated, the basic CA structure is enhanced in

two ways. First, the addition of a super-rule to each CA

cell is considered. The overviews of the design of linear

feedback shift register (LFSRs) and cellular automata

(CA), followed by a review of related works that have

utilized LFSR and CA for generating random numbers.

Therefore, evaluated the performance of CA-based

PRNGs suitable for implementation on FPGAs. Synthesis

results for the Xilinx Spartan 3E FPGA give a good idea

of the relative resources required for each configuration.

Pawel Dabal, Ryszard Pelka [4] presented FPGA

Implementation of Chaotic Pseudo-Random Bit

Generators‖ Modern communication systems (including

mobile systems) require the use of advanced methods of

information protection against unauthorized access.

Therefore, one of the essential problems of modern

cryptography is the generation of keys having relevant

statistical properties. In recent years, the cryptographers

pay an increasing attention to digital systems based on

chaos theory. Carlos Arturo Gayoso, C. González, L.

Arnone, M. Rabini, Jorge Castiñeira Moreira, [5]

presented ―Pseudorandom Number Generator Based on

the Residue Number System and its FPGA

Implementation‖ Residue Number System (RNS), which

allows us to design a very fast circuit that has a very

different way of operating with respect to other

generators.

PSEUDORANDOM number generators (PRNG)

have many applications among diverse fields such as

cryptography [1], communications [2], or procedural

generation [3]. Specifically, in the field of

instrumentation and measurements, PRNGs are needed in

many applications such as statistical sampling, Monte

Carlo simulations, evaluating the immunity to noise of

digital systems and, in general, testing of physical,

biological, and electrical systems: code density tests and

determination of Wiener and Volterra kernels in nonlinear

systems [4], [5]. Some of the most commonly used

PRNGs are based on linear congruential generators

(LCG) or linear feedback shift registers (LFSR). Many of

these systems, however, present some correlations or

short periods, which make them unsuitable for many

applications [6]. In this context, chaos-based

Fig. 1. Overall scheme of a generic PRNG

PRNGs have arisen as a good alternative, thanks to their

properties of ergodicity, and randomlike behavior [7]. In

this paper, we propose a random generator based on the

logistic map that, in order to improve its statistical

properties, dynamically changes its chaotic parameter.

The system has been implemented in a Virtex 7 field-

programmable gate array (FPGA), using 510 lookup

tables (LUTs) and 120 registers. To test the good

statistical properties of the proposed generator, its

generated sequences have been subjected to the National

Institute of Standards and Technology (NIST) tests. The

sequences have passed all of these tests, proving that they

are undistinguishable from a truly random sequence. The

main contribution of this paper is the proposal of a novel

chaos-based PRNG that:

1) Offers better randomness results than other PRNGs

commonly used in simulations such as LCGs and LFSRs;

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 93

2) Requires a very small amount of resources to be

implemented on an FPGA compared to other previously

proposed chaos-based PRNGs.

I. PRNG ALGORITHM

A. Generic Structure of a Chaotic PRNG A PRNG is an

algorithm that, starting with a seed, by using a

transformation function, generates a sequence that

appears to be random, and its length is much bigger than

the seed length (Fig. 1). A chaotic PRNG can be easily

implemented by using a digitized chaotic map xi+1 = f

(xi,γ) (1) where each xi is an element of the sequence and

γ is a constant parameter that determines the behavior of

the system. Using a map of this kind, starting from a seed

composed by x0 and γ , a sequence of elements {xi} is

generated. Since each element is represented by a certain

number of bits, it is possible to use all of them to build a

binary random generator. However, there can be

correlations among the bits within an element xi .

Therefore, to obtain better statistical properties,

only a few bits of each xi are usually used to build the

random sequences, typically the least significant bits

(LSBs) since they present a low correlation. In this paper,

we have based the algorithm on the logistic map, given by

xi+1 = γ xi(1 − xi) (2) where in order to work on the

chaotic region, necessary for obtaining good random

properties, the values of the parameter γ must be in the

interval [3.57, 4]. If γ < 3.57, fixed points or periodic

orbits (not suitable for PRNG applications) are obtained

and, if γ > 4, the orbits usually diverge [8]. This map has

been chosen due to its simplicity and its randomlike

behavior that has been widely studied in the past decades

[9].

B. Randomness Degradation Caused by the

Digitization of the System

When a chaotic map such as the logistic map is digitized

with a word length of n bits, each xi can only take 2n

different values. Furthermore, for a given γ , the value of

a certain xi determines the value of the next element xi+1.

Therefore, after a maximum number of 2n iterations, the

sequence will repeat itself. Although the maximum period

is 2n, much shorter periods, on the order of ∼2n/2, are

usually found of [10]. These short-period sequences fail

most of the NIST randomness tests [8]. Furthermore, if a

big number of random numbers were needed for signal

processing or simulation, the sequence would start to

repeat itself which could affect the simulation results. A

possible strategy to reduce this problem consists on using

bigger word lengths. For example, a word length of 500

bits is used in [11]. Unfortunately, this approach requires

to use a big amount of extra resources to obtain longer

periods. In this paper, this issue has been solved using an

alternative approach that improves the random properties

of a chaotic PRNG by using a small number of extra

resources.

C. Random-Enhancement Proposal

The random-enhancement approach used in this paper

consists of using several values of γ : γ1, γ2,...γm instead

of a single one. The sequence {xi} is generated by

changing the value of γ according to a sequence partition

{ki}. With this method, the first k1 elements are obtained

by xi = f (xi−1, γ1), the next k2 elements are obtained as

xi = f (xi−1, γ2), and so on. After having used all of the

values of γi and having generated m i=1 ki elements in

total, the initial value of γ and γ1 is reused, continuing the

process in a circular way. Furthermore, it has been

applied to a simpler chaotic map than the skew tent map

(used in [16] and [17]), the logistic map, obtaining a cost-

effective high-performance PRNG.

Fig. 2. Diagram of the enhanced PRNG. A FIFO is used

to store the values of each γi . This is done with the config

data signal. Write enable signal allows the system to write

the value of config data inside the FIFO. Finally, read

enable and load enable allow to read the next value of γi

from the FIFO and load it into the seed register. The

“config. data,” “read,” “write,” and “load” enable inputs

are driven by an external control block (not shown in the

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 94

picture) that has been designed to follow the proposed

algorithm.

The proposed system has been fully implemented in an

FPGA and exhaustively analyzed. A scheme of the

enhanced PRNG is shown in Fig. 2.

III PROPOSED SYSTEM

Design Overview

Tunability is established by setting the DCM

parameters on–the– fly using DPR capabilities using DRP

ports. This capability provides the design greater

flexibility than the ring oscillator-based BFD-PRNG. The

difference in the frequencies of the two generated clock

signals is captured using a DFF. The DFF sets when the

faster oscillator completes one cycle more than the slower

one (at the beat frequency interval). A counter is driven

by one of the generated clock signals, and is reset when

the DFF is set. Effectively, the counter increases the

throughput of the generated random numbers. The last

three LSBs of the maximum count values reached by the

count were found to show good randomness properties.

Fig. 3: Overall architecture of proposed Digital

Clock Manager based tunable BFD–PRNG

Fig. 3 shows the overall architecture of the proposed

PRNG. In place of two ring oscillators, two DCM

modules generate the oscillation waveforms. The DCM

primitives are parameterized to generate slightly different

frequencies, by adjusting two design parameters M

(Multiplication Factor) and D (Division Factor). In the

proposed design, the source of randomness is the jitter

presented in the DCM circuitry. The DCM modules allow

greater designer control over the clock waveforms, and

their usage eliminates the need for initial calibration [3].

 The initial value of the LFSR is called the seed,

and because the operation of the register is deterministic,

the stream of values produced by the register is

completely determined by its current (or previous) state.

Likewise, because the register has a finite number of

possible states, it must eventually enter a repeating cycle.

However, an LFSR with a wellchosen feedback function

can produce a sequence of bits which appears random and

which has a very long cycle. Applications of LFSRs

include generating pseudo-random numbers, pseudo-

noise sequences, fast digital counters, and whitening

sequences. Both hardware and software implementations

of LFSRs are common.

Fig 4 Galois LFSRs

 The feedback tap numbers correspond to a

primitive polynomial in the table so the register cycles

through the maximum number of 256 states excluding the

all-zeroes state. The bit positions that affect the next state

are called the taps. In the diagram the taps are [7,6,4,3].

The rightmost bit of the LFSR is called the output bit. The

taps are XOR'd sequentially with the output bit and then

fed back into the leftmost bit. The sequence of bits in the

rightmost position is called the output stream. The

arrangement of taps for feedback in an LFSR can be

expressed in finite field arithmetic as a polynomial mod 2.

This means that the coefficients of the polynomial must

be 1's or 0's.

 This is called the feedback polynomial or

reciprocal characteristic and 3rd bits (as shown), the

feedback polynomial is X 7 +X6 +X4 +X3 +1 The 'one'

in the polynomial does not correspond to a tap – it

corresponds to the input to the first bit (i.e. x 0, which is

equivalent to 1). The powers of the terms represent the

tapped bits, counting from the left. The first and last bits

are always connected as an input and output tap

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 95

respectively. The LFSR is maximal-length if and only if

the corresponding feedback polynomial is primitive. This

means that the following conditions are necessary (but not

sufficient): The number of taps should be even. The set

of taps – taken all together, not pairwise (i.e. as pairs of

elements) – must be relatively prime. In other words,

there must be no divisor other than 1 common to all taps.

Galois LFSRs:

Named after the French mathematician Évariste Galois,

an LFSR in Galois configuration, which is also known as

modular, internal XORs as well as one-to-many LFSR, is

an alternate structure that can generate the same output

stream as a conventional LFSR (but offset in time). In the

Galois configuration, when the system is clocked, bits

that are not taps are shifted one position to the right

unchanged. The taps, on the other hand, are XOR'd with

the output bit before they are stored in the next position.

The new output bit is the next input bit. The effect of this

is that when the output bit is zero all the bits in the

register shift to the right unchanged, and the input bit

becomes zero. When the output bit is one, the bits in the

tap positions all flip (if they are 0, they become 1, and if

they are 1, they become 0), and then the entire register is

shifted to the right and the input bit becomes 1.

Fig 5 Galois register LFSRs

To generate the same output stream, the order of the taps

is the counterpart (see above) of the order for the

conventional LFSR, otherwise the stream will be in

reverse. Note that the internal state of the LFSR is not

necessarily the same.

The Galois register shown has the same output

stream as the Fibonacci register in the first section. A

time offset exists between the streams, so a different start

point will be needed to get the same output each cycle.

Galois LFSRs do not concatenate every tap to produce the

new input (the XOR'ing is done within the LFSR and no

XOR gates are run in serial, therefore the propagation

times are reduced to that of one XOR rather than a whole

chain), thus it is possible for each tap to be computed in

parallel, increasing the speed of execution. In a software

implementation of an LFSR, the Galois form is more

efficient as the XOR operations can be implemented a

word at a time: only the output bit must be examined

individually.

It is a pseudorandom number generator proposed

in 1986by Lenore Blum, Manuel Blum and Michael Shub

(Blum et al., 1986). Blum Blum Shub takes the form:

Xn+1 = Xn2mod n Where n=p x q is the product of two

large primes p and q. At each step of the algorithm, some

output is derived from xn+1; the output is commonly the

bit parity of Xn+1 or one or more of the least significant

bits of Xn+1. The two primes, p and q, should both be

congruent to 3 (mod 4) . Steps for executing Blum Blum

Shub Generator algorithm:

The Blum Blum Shub Generator is known to be

the cryptographically secure pseudo random number

generator (CSPRNG). The algorithm for BBS generator is

as follows: Select two big prime numbers p and q, such

that both the numbers leave a remainder of 3 when

divided by 4. Choose n = p * q Choose seeds, such that s

is relatively prime to n which means that neither p nor q is

a factor of s. Xo = s2 mod n The consequent values are

generated according to the formula Xi = (Xi1)2mod n A

sequence of binary digits is produced according to the

formula Bi= Xi mod2 The output sequence is B1, B2, B3,

B4…… Pipelining Introduction

a) Pipelining Comes from the idea of a water

pipe: continue sending water without waiting the water in

the pipe to be out leads to a reduction in the critical path

Either increases the clock speed (or sampling speed) or

reduces the power consumption at same speed in a DSP

system

 b) Parallel Processing Multiple outputs are

computed in parallel in a clock period The effective

sampling speed is increased by the level of parallelism

Can also be used to reduce the power consumption water

pipe An instruction pipeline is a technique used in the

design of computers to increase their instruction

throughput (the number of instructions that can be

executed in a unit of time).

The first step is always to fetch the instruction

from memory; the final step is usually writing the results

of the instruction to processor Registers or to memory.

Pipelining seeks to let the processor work on as many

instructions as there are dependent steps, just as an

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 96

assembly line builds many vehicles at once, rather than

waiting until one vehicle has passed through the line

before admitting the next one. Just as the goal of the

assembly line is to keep each assembler productive at all

times, pipelining seeks to keep every portion of the

processor busy with some instruction. Pipelining lets the

computer's cycle time be the time of the slowest step, and

ideally lets one instruction complete in every cycle.

A) The LUT-SR PRNG The LUT-SR generators provide

a middle performance between the LUT-Opt [1] and

LUT-FIFO generator [1], by Implementation of PRNG in

FPGA using Efficient Resource Utilization 91 using

cheap bit-wise shift-registers to provide long periods and

good quality without requiring expensive resources. The

number of bits generated per cycle is chosen generally to

meet the needs of the application.

B) Algorithm LUT-SR generator family uses a short and

precise algorithm for expanding the full PRNG structure.

The algorithm [1] uses r, t and k with period 2 − 1 where r

is the number of random output bits generated per cycle, t

is the XOR gate input count, k is the maximum shift

register length. The parameters (r, t, k) describe the

properties of the generator in terms of application

requirements and architectural restrictions. The

algorithmic steps are as follows, • Initial loading Initially

the loading step is done by giving a seed. For rbit

generator the seed size is r. As soon as the seed is given

the bits are permuted. Any seed other than “all-zero state”

can be given. The seed is also known as initial seed. All

zero state condition cancels random number generation

and makes the generator idle [1].

 Permutation The simple dependency between

adjoining bits is masked up using a final output

permutation. The model is shown in Fig.1. Loading XOR

connections, the permuted outputs are given as inputs to

XOR gates. The number of inputs should not exceed r.

The number of rounds should be t or t-1[1], where t is the

number of XOR gates given. Each permuted output bit is

used at most t times. Some bits will be assigned the same

FIFO bit in multiple rounds. The XOR- ed outputs are

given to the PIPO SR and fed back to the FIFO

extensions [1]. PIPO SR Universal shift register performs

shifting operation in addition to the parallel-in-parallel-

out function.

 At a time, multiple input processing happens in

Parallel-in-parallelout-shift register. The purpose of the

parallel-in parallel-out shift register is to take in parallel

data, shifts it, then output the data [1]. FIFO Extension 1-

bit shift registers are used. Bitwise shift registers improve

the rate of mixing [1]. For 8-bit PRNG, the length of

FIFO SR should not exceed k, where k=8.The length of

the shift register is given by the number of flip-flops. The

outputs from PIPO SR are fed back to FIFO or SISO SR.

A FIFO is a sequential data buffer that is very easy to use.

Very small FIFOs can be implemented with flip-flops or

register arrays, sometimes even with shift registers [1].

The resulting sequence is fed back to the SISO

SR or FIFO SR. Permutation of the resulting outputs is

given to the XOR gates. The output of the XOR gates are

then given to the PIPO SRs, where the XOR gate outputs

are shifted and thus random number generation takes

place successfully. The Random Number Generation is

performed as per the methodology.

The simulations are performed in Model Sim 6.4a

which is a tool and synthesized using Xilinx PlanAhead

Virtex5 kit verified on the Spartan 3E kit and the

programming is written using Verilog. The results that are

obtained from the tools and the design summary obtained

from Xilinx 8.1i are shown below. The initial seed is

given as input. The seed is permuted. The results for 8-bit

PRNG are discussed below. The same scheme is carried

out for 64-bit PRNG. The permuted bits’ output is given

to the XOR gates. For 8-bit PRNG the number of XOR

gates is 8(t=8). The concept of permutation is used up for

improving randomness among bits and thus employing

unpredictability. The first and last bits are interchanged.

The same concept of permutation is used for different bit

PRNGs. The permuted outputs are fed into the XOR gates

and for remaining inputs to XOR gates round basis is

used. Hence, the obtained XOR gate output bits are fed in

a parallel basis into the PIPO SR. resulting outputs

generate the random number cycle. The cycle is fed into

the SISO SR [FIFO] of varying lengths (length=k).

 The length should not exceed r. As each bit

crosses the flip-flop, it will be set to zero. Hence, random

number generation takes place. The resulting random

numbers are generated such that their period is 2r -1. If

the number of bits is 16, then the period is 216-1. The

count of all zero state is reduced since the all zero state

leads to idle condition. The period is the duration after

which the entire sequence goes on repeating based on the

initial seed and the permutations. So, the period for 32,

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 97

64, 128 and 512-bit PRNGs are 232-1, 264-1, 2128-1,

2512-1.

Tuning Circuitry

Fig. 6: Architecture of tuning circuity.

The architecture of the tuning circuitry is shown

in Fig. 3. The target clock frequency is determined by the

set of parameter values actually selected. The random

values reached by the counter, as well as the jitter are

related to the chosen parameters M and D (details are

discussed in Section IV). This makes it possible to tune

the proposed PRNG using the predetermined stored M

and D values. As unrestricted DPR has been shown to be

a potential threat to the circuit [6], the safe operational

value combinations of the D and M parameters for each

DCM are predetermined during the design time, and

stored on an on-chip Block RAM (BRAM) memory block

in the FPGA.

There are actually two different options for the

clock generators – one can use the Phase Locked Loop

(PLL) hard macros available on Xilinx FPGAs, or the

DCMs. We next describe analytical and experimental

results which compelled us to choose DCM in favor of

the PLL modules for clock waveform generation.

Circuit Behavior with PLL as Clock Generator

We first consider the operational principle for the

PLL, and its feasibility as a component of the proposed

PRNG. The Xilinx PLL synthesizes a clock signal whose

frequency is given by: FCLKFX = FCLKIN · M D (1)

where FCLKIN is the frequency of input clock signal, and

M and D are the multiplication and division factors

previously mentioned. Values of M and D can be varied

to generate the required clock frequency. The two PLLs

can be parametrized with the necessary set of (M, D)

values to generate two slightly different clock

frequencies. Without loss of generality, assume P LLA is

set up to be slightly faster than P LLB, i.e. the time

periods are related by TA < TB. On reaching the beat

frequency interval (say, n clock cycles), by definition, P

LLA completes one cycle more than the slower one.

The following equation depicts this simple

model: TA TB = N N + 1 (2) N = 2.n, where n is the

estimated maximum counter value. For the first n clock

cycles, the counter does not increment, and then

increments by one for each of the next n clock cycles.

Hence, the maximum counter values reached is n. Then,

Eqn. (2) leads to: n = TB /2(TB − TA) (3) Using design

configuration parameters (M and D) one of the oscillators

is made to run faster than the other. This is done in order

to limit the range of counter values produced.

If both the oscillators were configured to run at

the same frequency we may get random numbers, but the

maximum counter value produced will be very high

(theoretically infinite) as per Eqn. (3). In other words, the

latency of the circuit will be very high, since the counter

sets and resets only after reaching a very large count

value. When the Xilinx PLLs are used as clock

generators, the predicted and observed counter values for

all combinations of (M, D) values remain the same. This

confirms that the Xilinx PLL instances demonstrate close-

toideal behavior and are quasi-identical, and have

negligible jitter between the waveforms generated by

them. Since the BFDPRNG is critically dependent on the

presence of jitter between the two generated clock

waveforms, PLLs seem unsuitable as components of the

proposed PRNG. Hence, next we examine the DCM as

clock generators.

Circuit Behavior with DCM as Clock Generator

Without loss of generality, the clock signals

produced by one of the DCM (say, DCMA) is slightly

faster than the other (DCMB), implying TA < TB. This is

ensured by assigning the design parameters M and D as in

Eqn. (7). More details are discussed in Section IV-C.

Timing diagrams of the DCM clock outputs and the

resultant DFF response is shown in Fig. 4.

Fig. 7: Timing diagram of DCM output waveforms

and the corresponding and DFF response.

Let N be the number of clock cycles of the slower

clock signal in which the faster clock signal completes

exactly one cycle more. Then, tA [N + 1] = (N + 1) TA +

€A(4) and tB [N] = NTB + €B (5) where €A and €B are the

uncertainties due to jitter in DCMA and DCMB

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 98

respectively. The uncertainties due to jitter in DCMA and

DCMB are different, this is because the DCMs are

designed with distinct modeling parameters M and D. The

corresponding jitter for each of the DCMs used in the

proposed design is presented in Table III. For example,

consider the configuration presented in Sl.No. 1. In this

case, DCMA is configured with M=15 and D=31 and

DCMB is configured with M=14 and D=29. This results

in peak-to-peak jitter of 0.600 ns and 0.568 ns for DCMA

and DCMB respectively. Of course, we also have: tA[N +

1] = tB[N].

Assuming there is no metastability for the DFF if

signal transitions occur in the setup-hold timing window

around its driving clock edge (the metastability issue can

be avoided by cascaded DFF combination), the transition

time (td) of the DFF, the time interval after which it sets

(i.e. the counter driven by the DFF resets), is estimated

by: td = tA[N + 1] + tB[N] 2 = (N + 1)TA + NTB + €A + €B

2 (6) From Eqn. (6), the transition time of DFF is a

random process. The output of the DFF, i.e. the time

interval (td) after which the counter resets, is thus a

random function. As a result, the count value obtained

when the counter resets is also a random quantity.

IV SIMULATION RESULTS

Power report

Timing report

Design Summary

RTL Schematic

SIMULATION RESULTS

V CONCLUSION

We have presented an improved fully digital tunable

PRNG for FPGA based applications, based on the

principle of Beat Frequency Detection and clock jitter,

and with in-built error correction capabilities. The PRNG

utilizes this tunability feature for determining the degree

of randomness, thus providing a high degree of flexibility

for various applications.

VI FUTURE SCOPE

Presently, we are dealing with the 4-digit numeric OTP

system in this project. So, in order to improve the

security, we need to develop an Alpha numeric (symbol

base) OTP systems.

REFERENCES

[1] D. B. Thomas and W. Luk, “The LUT-SR Family of

Uniform Random Number Generators for FPGA

 || Volume 5 || Issue 12 || December 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

IMPACT FACTOR 6.228 WWW.IJASRET.COM (Multidisciplinary Journal) 99

Architectures,” IEEE Transactions on Very Large-Scale

Integration (VLSI) Systems, March 2012.

[2] D. B. Thomas and W. Luk, “FPGA-optimized uniform

random number generators using lot and shift registers,”

in Proc. Int. Conf. Field Program. Logic Appl., 2010, pp.

77–82.

[3] D. B. Thomas and W. Luk, “FPGA- optimized high -

quality uniform random number generators,” in Proc.

Field Program. Logic Appl. Int.Conf., 2008, pp. 235-244.

[4] D. B. Thomas and W. Luk, “High quality uniform

random number generation using LUT optimized state-

transition matrices,” J. VLSI Signal Process., vol. 47, no.

1, pp. 77–92, 2007.

[5] F. Panneton, P. L’Ecuyer, and M. Matsumoto,

“Improved long period generators based on linear

recurrences modulo 2,” ACM Trans. Math. Software, vol.

32, no. 1, pp. 1–16, 2006.

[6] P. L’Ecuyer, “Tables of maximally equidistributed

combined LFSR generators,” Math.Comput., vol. 68, no.

225, pp. 261– 269, 1999.

[7] M. Saito and M. Matsumoto, “SIMD-oriented fast

mersenne twister: A 128-bit Pseudo random number

generator,” in MonteCarlo and Quasi- Monte Carlo

Methods. NewYork: SpringerVerlag, 2006, pp. 607–622.

[8] M. Matsumoto and T. Nishimura, “Mersenne twister:

A 623- dimensionally equidistributed uniform pseudo-

random number generator,” ACM Trans. Modeling

Comput. Simulate., vol.8, no. 1, pp. 3–30, Jan. 1998.

[9] F. Panneton, P. L’Ecuyer, and M. Matsumoto,

“Improved longperiod generators based on linear

recurrences modulo 2,” ACM Trans. Math. Software, vol.

32, no. 1, pp. 1–16, 2006.

[10] K. H. Tsoi, K. H. Leung, and P. H. W. Leong,

“Compact FPGAbased Pseudo Random Number

Generators”, in IEEE Symposium on FPGAs for Custom

Computing Machines, IEEE Computer Society,

Washington, DC, 2003, p. 51.

