
 || Volume 5 || Issue 9 || September 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

WWW.IJASRET.COM 59

NATURAL LANGUAGE TEXT TO SQL QUERY BY PYTHON

WRAPPER

Mrityunjay kr1, Niraj Kumar 2, Prof Prabodh Nimat3

 Dept. Computer Engineering , Dr. D.Y Patil Institute of technology, Pimpri, Pune1,2,3

sinhamrityunjay@gmail.com,nirajkumarsinghnks17@gmail.com

Abstract: Databases are increasingly common and are becoming increasingly important in actual

applications and Web sites. They often used by people who do not have great competition in this domain

and who do not know exactly their structure. This is why translators from natural language to SQL queries

are developed. Unfortunately, most of these translators are confined to a single database due to the

specification of the base architecture. In this paper, we propose a method to query any database from any

language. We evaluate our application on databases and we also show that it supports more operations

than most other translators of these translators are confined to a single database due to the specification of

the base architecture. In this paper, we propose a method to query any database from any language. We

evaluate our application on databases and we also show that it supports more operations than most other

translators.

Keywords: Databases, SQL Query, English to SQL Translator, Natural language interfaces to

database, TreeTagger.

 -- ---

I INTRODUCTION

For several years, databases (DB) have

become inevitable for all Websites or applications

managing large amounts of information, such as user

accounts (banks, transport agencies, social network,

video games, etc.).The Internet has gradually become

democratized and popularized, but databases still

remain abstract for many people. Some positions do

not require any computer training or in data

administration still require working closely with the

databases, as in accounting or secretarial work for

example. It is with the aim that a person, having no

competence in the field database management, cannot

directly administer one, but at least understand how it

works, interact with it and perform simple

II OBJECTIVE:

The objective of our project is to generate

accurate and valid SQL queries after parsing natural

language using open source tools and libraries. Users

will be able to obtain SQL statement for the major

command words by passing in a sentence or sentence

fragment. We wish to do so in a way that progresses

the current open source projects towards robustness

and usability.

III RELATED WORK

A.Natural language processing for speech synthesis

A system and the method interact with

networked objects, via a computer using the utterance,

speech processing and natural language processing. A

data definition file relates networked objects and a

mailto:sinhamrityunjay@gmail.com

 || Volume 5 || Issue 9 || September 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

WWW.IJASRET.COM 60

speech processor. The speech processor searches a

first grammar file for a matching phrase for the

utterance, and search a second grammar file for a

matching state if the coordinating expression isn't

found in the principal sentence structure record. The

system also include a natural language processor to

search a database for a matching entry for the

matching phrase. The natural language processing is

the computerized approach to analyzing text and

being a very active area of research and development.

This is based on the text to tasks on it (interrogation,

addition, deletion), which translators of the language,

natural to database query language have emerged.

B. A bit of progress in language modeling.

speech conversion in which the text data is

first input to the system. It uses high levels of modules

for speech synthesis. It uses sentence

segmentation which deals with punctuation mark with

simple decision tree [2].

Our perplexity diminishment are maybe the

most noteworthy detailed contrasted with a

baseline[5] .

IV IMPLEMENTATION

System Design

We propose a system which looks to

overcome the shortcomings of existing system that

gets a natural language sentence as an input, which is

then passed through various phases of NLP to form

the final SQL query.

1.Tokenize and Tag

The input natural language query gets split

into different tokens with the help of the tokenizer

,word_tokenizer, from ’NLTK’ package. The

tokenized array of words is tagged according to the

part-of-speech tagger using the Stanford POS tagger

[14]. All processes following this step use these

tagged tokens for processing.

2. Analyze tagged tokens

Based on the tagged tokens of earlier step, the

noun map and verb list is prepared through one

iteration over the tokens. The tokens corresponding to

aggregate functions are also mapped with their

respective nouns using a pre-created corpus of words.

The decision whether the natural language statement

represents a data retrieval query (SELECT) or a DML

query (INSERT, UPDATE, DELETE) is taken at this

stage with the help of certain ’data arrays’ for

denoting type of query. For example, when words like

’insert’ and its certain synonyms appear in the input,

the type of query is ’INSERT’ and so on. In any type

of query, the tentative tags ’S’ (SELECT), ’W’

(WHERE), ’O’ (ORDER BY) are mapped to the

nouns indicating the clauses to which they belong. For

this, we have designed ’data dictionaries’ for different

clauses. These data dictionaries consist of the token-

clause term pair, for e.g. aggregate clause data

dictionary is ”number”: ”COUNT”, ”count”:

”COUNT”, ”total”: ”SUM”, ”sum”: ”SUM”,

”average”: ”AVG”, ”mean”: ”AVG”. Thus, if any of

these tokens is encountered, it is likely to have

aggregate clause and accordingly the nouns are tagged

with the clause tag.

3.Map to table names and attributes

Using the noun map and verb list, the table set

is prepared, which will hold the tables that are needed

in the query to be formed. This is based on the fact

that the table names are either nouns or verbs. The

noun map is used to find the attributes which are

needed in the final query. The attributes, the table

associated with the attribute and the clause tag are

stored in an attribute-table map which is used in the

final stage of query formation. This is done using the

 || Volume 5 || Issue 9 || September 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

WWW.IJASRET.COM 61

string matching algorithm that we have implemented

in our system. The words in the input sentence need

not exactly be as they are in the database. The

stemmer and lemmatiser are applied on the words

before they are matched using our string matching

algorithm. The data obtained during this step i.e. table

set and attribute-table map, is most likely to be in the

final query, however, it might be refined later.

4.Filter redundancy and finalize clauses of the

query

Using the various data dictionaries defined,

the system has already decided which clauses are

likely to exist in the final query and has mapped the

data to the clauses. But, some of the data has to be

finalized at this stage. The data related to GROUP BY

and HAVING clause is collected using the previous

data and the basic rules of SQL. For example, if

aggregate function is compared to a constant, i.e.

’MAX(salary) > 40000’, then ’HAVING’ clause has

to be used instead of ’WHERE’ clause.

As mentioned in the earlier step, the

refinement of data must be done. Here, the redundant

tables and attributes are removed using some filter

algorithms. For example, one of the algorithm filters

the table and their corresponding attributes which are

a subset of some other table in table set. i.e. if table set

has [table1, table2] and table1 has attributes [a1, a2]

and table2 has [a1, a2, a3] after the previous steps,

then table2 is enough to represent all the attributes

required and hence table1 is removed. There are

various other algorithms applied in order to filter the

results and finalize the table set and table-attribute

map.

5.Form the final query and execute

Currently, as our system handles only

MySQL queries, the templates used for the query

formation will be according to the MySQL syntax.

According to the type of query selected in the second

stage of the process (Analyze tagged tokens), the

appropriate template is chosen.

The template is selected from the following:

1. For data retrieval queries (SELECT):

1.1. SELECT <select clause> FROM <tables>

WHERE <where clause> ORDER BY <order by

clause > GROUP BY <group by clause> HAVING

<having clause> LIMIT <limit clause>.

2. For data manipulation queries (INSERT, UPDATE,

DELETE):

2.1. INSERT INTO <insert clause> VALUES <values

clause>

2.2. UPDATE <update clause> SET <set clause>

WHERE <where clause>

2.3. DELETE FROM <delete clause> WHERE

<where clause>

Based on the data about various clauses collected

from earlier steps and the information about attributes

and tables stored in the attribute-table map, the final

query is formed by filling in the information into the

appropriate template. Depending on the clause data

collected from Depending on the relation between

multiple tables, the decision of INNER JOIN or

NATURAL JOIN is taken. For example, if there are

two tables. If these two tables have one common

attribute and is named the same in both, then there is

NATURAL JOIN between the tables. But if the

common attribute is named differently in the two

tables, then there is INNER JOIN between the tables.

ADVANTAGES

1.The tool can deal with any language, so long as it

has its configuration file (i.e. a file with the keywords

of the language).

2.Language configuration files can be found in lang/

 || Volume 5 || Issue 9 || September 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

WWW.IJASRET.COM 62

directory. The files are CSV files. Each line represent

a type of keywords. Anything before the colon is

ignored. Keywords must be separated by a comma.

3.We can build our own language configuration file

following the English and French templates.

DISADVANTAGES

The following are some of the types of inputs that are

not presently handled by our system.

1.Find the capacity of the classroom number 3128 in

building Taylor SELECT *FROM classroom

WHERE classroom.capacity = ’3128’ AND

classroom.building = ’Taylor’

In this particular example, the system fails to decide

whether to take ‘capacity of class- room’ or

‘classroom number’ as an n-gram. Hence, the

mapping fails

2.Who teaches Physics?

SELECT * FROM department WHERE

department.dep name = ’Physics’

In this example, the implicit query module of our

system is able to map Physics to ’department name’

attribute from table ’department’. But it fails to identify

that ’who’ refers to a person (an instructor).

V RESULT:

OUTPUT

VI CONCLUSION

The ability to find query for any simple language

statement make it more useful for people with no

knowledge of database. The approach itself can

revolutionize and make the work easier. In addition,

provision is made to detect the language of the request

entered by the user in order to use a dictionary of

synonyms relating to this language and to adjust the

rules according to the language to thus make the robust

system for languages other than English. To conclude,

although it can be improved, this approach allows you

to query any SQL database, thus meeting the portability

objectives set, while keeping performance within the

average of the applications already existing and

covering a wide range of selection operations.

REFERENCES

1.TO THEXANDER R., R U KS HA N P. & M

AHESAN S. (2013). Natural Language Web Interface

for Database (NLWIDB). In CoRR .

 || Volume 5 || Issue 9 || September 2020 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

 AND ENGINEERING TRENDS

WWW.IJASRET.COM 63

2.A NDROUTSOPOULOS I., RITCHIE G. &

THANISCH P. (1995). Natural Language Interfaces to

Databases - An Intro-

duction. In Journal of Natural Language Engineering , 1

, 29–81.

3.C HANDRA Y. (2006). Natural Language Interfaces

to Databases . PhD Thesis. University of North Texas,

USA.

4.C HAUDHARI P. P. (2013). Natural Language

Statement to SQL Query Translator. In International

Journal of Computer Applications , 82 (5), 18–22.

5.C HEN W. (2014). Parameterized Spatial SQL

Translation for Geographic Question Answering. In

Semantic Computing (ICSC), 2014 IEEE International ,

p. 23–27.

6.C IMIANO P. & M INOCK M. (2009). Natural

Language Interfaces: What is the Problem ? - A data-

driven quantitative analysis. In 14th International

Conference on Applications of Natural Language to

Information System (NLDB) , 5723 .

7.D ESHPANDE A. K. & D EVALE PR (2012).

Natural Language Query Processing Using Probabilistic

Context Free Grammar. In International Journal of

Advances in Engineering and Technology , 3 , 568–

573.

8. D JAHANTIGHI F. S., N OROUZIFARD M., D

AVARPANAH YEAR D S. & SHEY N / ASSTo Mr.

H. (2008). Using Natural Lan- guage Processing in

Order to Create SQL Queries. In Proceedings of the

International Conference on Computer and

communication engineering. Communication

Engineering , p. 600–604.

9.G IORDANI A. & M OSCHITTI A. (2009). Semantic

Mapping Between Natural Language Questions and

SQL Queries via Syntactic Pairing. In Natural

Language Processing and Information Systems , 5723 ,

207–221.

10. G IORDANI A. & M OSCHITTI A. (2012).

Translating Questions to SQL Queries with Generative

Parsers Discriminati- vely Reranked. In COLING 2012:

Posters , p. 401–410.

