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Abstract: Fractional Calculus (FC) goes back to the inception of the theory of differential calculus. Nevertheless, the 

application of FC just developed in the recent two decades, due to the advancement in the domain of chaos that revealed subtle 

links with the FC notions. At the topic of dynamical systems theory, some work has been carried out but the proposed models 

and methods are still in a preliminary state of establishment. Having these notions in mind, the paper explores FC in the study 

of system dynamics and control. In this context, this work analyses the usage of FC in the fields of controller tuning, legged 

robots, redundant robots, heat diffusion, and digital circuit synthesis. We explored review of fractional inequalities. 
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  ***   

I INTRODUCTION 

In modelling engineering and scientific challenges, fractional 

differential and integration balances play increasingly essential 

roles. In many circumstances, such models have been shown to 

  1   
𝐷 𝑥 𝑡 = lim[ 

ℎ→0 ℎ𝛼 

- - - - - -(2) 

 

(
𝛼
) = 

Γ(𝛼+1) 

𝑘=0(−1)𝑘 (𝛼)𝑥(𝑡 − 𝑘ℎ)] - - - - - - - - 

produce more appropriate results than analogue models with 

integer derivatives. A thorough investigation has been made into 

the computation of the fractional-order derivatives and fractional 

differential equations [1]. The results for fractional differential 

equations are derived by a fixed-point technique in most of the 

accessible publications. The qualitative features of Riemann– 

Liouville (R–L) and the Caputo derivatives can be discovered 

using the differential and integral inequalities. 

𝑘 Γ(𝑘+1)Γ(𝛼−𝑘+1) 

 

Where Γ(𝑥) is the function of the gamma and ℎ is the increase of 

the time. However, (2) reveals that "global operators" have a 

memory of past occurrences and are suitable for memory effects 

modelling in most materials and systems. 

 
The definition of a fractional-order derivative for Riemann- 

Liouville is (𝛼 > 0): 

 
The generalisation in non-integer values of the concept of 𝐷𝛼𝑓(𝑡) = 

1
 𝑑𝑛      𝑡 ∫ 

 

𝑓(𝑐) 
 

𝑑𝑟, 𝑛 − 1 < 𝛼 < 𝑛 
 

- - - - 

derivative 𝐷𝛼[𝑓(𝑥)] goes back to the early stage of differential 
𝑡 Γ(𝑛−𝛼) 𝑑𝑡𝑛   𝑎 (𝑡−𝑐)𝛼−𝑛+1 

- - - - - - - - - -(3) 

calculus Theory [2].  Indeed, Leibniz had various comments 
1 

regarding calculating the 𝐷2[𝑓(𝑥)] in his communication with 

Bernoulli, L'Hôpital and Wallis (1695). Nonetheless, numerous 

mathematicians, like Euler, Liouville, Riemann, and Letnikov, 

have contributed to the development of the theory of fractional 

calculus (FC). 

 
The FC is concerned with arbitrary derivatives and components 

(real or, even, complex order) [6]. There have been various 

distinct approaches to the mathematical definition of a 

derivative/integral fractional order. For instance, the definition 

of Laplace of a fractional 𝑥(𝑡) signal derivative is 

𝐷𝛼𝑥(𝑡) = 𝐿−1{𝑠𝛼𝑋(𝑠) − ∑𝑛−1 𝑠𝑘 𝐷𝛼−𝑘−1𝑥(𝑡)|𝑡 = 0} - - - 

- - - - - - - - - -(1) 
 

Where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝛼 > 0. The Grünwald-Letnikov definition 

is given by (𝛼 ∈ℜ): 
Where Γ(𝑥) is the Gamma function of 𝑥. 

 

The fractional-order integrals/derivatives of numerous functions 

can be calculated on the basis of the provided definitions. 

Nevertheless, it is not straightforward to determine and 

implement fractional-order algorithms, and the next parts will 

address the issue. 

FC has been a successful field of scientific and engineering 

research in recent years. Many scientific sectors are actually 

taking the concept of FC into account and we may use it in 

viscoelasticity and damping, diffusion and wave propagation, 

electromagnetism, chaos, fractals, heat transfer, biology, 

electronics, signal processing, robotics, system identification, 

traffic systems, genetic algorithms, percolation, modelling and 

identification, telecommunications. Telecommunication systems 

are also included [9]. 
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Taking these notions into account, FC's various science and 

engineering applications. The application of FC idea for tuning 

PID controllers is described, and the fractional dynamics of the 

trajectory control of redundant manipulators are provided in the 

application of a fractional-order PD controller for controlling the 

leg joints of the hexapod robot [7]. Next, the fractional properties 

of heat diffusion are introduced along with a media, and the 

application of FC to circuit creation with evolutionary algorithms is 

displayed. 

 

Preliminaries: 

 

1. M. Caputo and M. Fabrizio proposed 𝛼 ∈ (0,1) of a totally 

integrative   function   𝑓   on   [𝑡0, �̃�],   for   any   �̃�  > 𝑡0  ≥ 0, 𝑓 ∈ 

𝐴𝐶𝑙𝑜𝑐([𝑡0, ∞) (which means the first of the original derivatives 

of 𝑓 is integral on [0, �̃�) for any �̃�  > 0, in the form 

REVIEW OF LITERATURE: 

 

Many mathematical experts such as Hardy et al. Beckenbach & 

Bellman discussed the origin of the inequalities in many works. 

Mitrinos . A detailed treatment of integral inequalities may be 

found in a work by B.G. Pachpatte that covers multiple 

applications in the theory of different types of differential and 

integrative equations. Gronwall showed an outstanding 

inequality that has gained great notice in the literature and still 

attracts interest. The Gronwalls type inequalities of a variable 

play a very important role in the qualitative theory of differential 

for real functions. R. Bellman is responsible for the first 

application of the Gronwall inequality in order to establish 

limitations and uniqueness. Gronwall-Bellman inequality is an 

essential tool for studying qualitative behaviour of solutions of 

differential and stability, which is normally shown in elementary 

differential equations using continuity arguments. Fractional 
𝐶𝐹𝐷𝛼 𝑓(𝑡) = 

𝑀(𝛼)
 

 

 

∫
𝑡  

exp (−   
𝛼

 (𝑡 − 𝑟)) 𝑓(1)(𝑟)𝑑𝑟,   𝑡 > inequality development is based on fractional calculus which 

𝑡0    𝑡 
 

𝑡0, 

(1−𝛼) 𝑡0 (1−𝛼) originated in the L-interest Hospital's to know 1 of the 

derivatives x and Leibnitz 2 studied the answer in 1695. The 

fractional theory of Euler (1770) who formulated continuous 
Where 𝑀(𝛼) a normalizer function, such as 𝑀(0) = 𝑀(1) = 1 

and 𝑓1 = 
𝑑 

𝑓 
𝑑𝑟 

 

2. Almeida et al., considered the initial value problem of a 

fractional differential equation including 𝜓-Caputo fractional 

derivative 

 

𝑐𝐷𝛼,𝜓 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑡 ∈ [𝑎, 𝑏], 

 
𝑦(𝑎) = 𝑦 , 𝑦[𝑘](𝑎) = 𝑦𝑘, 𝑘 = 1,2, … , 𝑛 − 1, 

 
Where 𝑓: [𝑎, 𝑏] × ℝ → ℝ is a continuous function and 𝑐𝐷𝛼,𝜓 is 

the 𝜓-Caputo fractional derivative of order 𝑛 − 1 < 𝛼 < 

𝑛, 𝑦𝑎, 𝑦𝑘 ∈ ℝ and 𝑡 ∈ [𝑎, 𝑏], 𝑦 ∈ 𝐶𝑛−1[𝑎, 𝑏]. 

3. Anastassiou presents improvements of a composition rule for 

the Canvati fractional derivatives, which have the general form 

∫
𝑏 

𝑤 (𝑡)|(𝐷𝜇1𝑓)(𝑡)||(𝐷𝜇2𝑓)(𝑡)|𝑑𝑡 ≤ 
  

differentiation by interpolation. The exponent law for fractional 

derivatives was developed by Lagrange's (1849). The factional 

derivative of an integral is defined by Laplace (1820) [8]. The 

derivative of arbitrary order was found first by Lacroix (1819), 

subsequently by Joseph B.J. Fourier[1822]. Niels Henrick Abel 

first uses fractional operation and then follows other definitions. 

The fractional analysis is a very useful means of differentiating 

and integrating with the real or complex numerical powers of 

differential or integrative operators in mathematical analysis. 

The research monographs by Miller & Ross (1993) Kiryakova 

(1994), Rubin (1975), Podlubny (1999) and Kilbas etal contain a 

complete accounting of fractional calculus operators together 

with their properties and application (2006) [1]. Mathai and 

Haubold (2008) and Mathai et al. were chapters alluded to by the 

author (2010).  The monographs  of 

R.Bellman(1965),V.Laxmikantham are used to start the 

development of integral inequality. A.A.Martynyuk 

&R.Gutowski  (1979)J.Scroder  (1980) etc. 
Leela(1969),W.Walter(1970),P.R.Be esack(1975), A.N.Filatov 

𝑎 1 
𝑏 2 𝑢 𝑝 and L.V.SHAROV (1976). Our theory of integral inequalities is 

𝐾(∫𝑎 𝑤2(𝑡) |(𝐷 𝑓)(𝑡)| 𝑑𝑡)𝑝, 

Where 𝑤2 and 𝑤1 are weight functions, and 𝐷𝛾𝑓 denotes the 

Canavati functional derivatives of 𝑓 of order 𝛾. 

 

4. In Marchaud’s doctoral thesis, fractional differentiation for 

sufficiently regular real functions 𝑓: (0,1) → ℝ extended with 0 

for 𝑥 ≥ 0, whenever 𝛼 ∈ (0,1) : 

not sufficient to examine partial differential equations and 

integral differential equations. Thus fractional inequalities are 

developed through the functions of convex, concave, Mittag 

Leffler, Lyopunov, etc. The authors identified a few slightly 

unique integral inequalities of the type Grownwall-Bellman and 

applied them to qualitative analysis of the solutions to several 

fractional differential equations of the type Caputo. Lyapunov 

inequality and many of their generalisations have been proven 

𝐷𝛼𝑓(𝑥) = 
𝛼

 ∫
+∞ (𝑓(𝑥)−𝑓(𝑥−𝑡))   

𝑑𝑡.
 valuable instruments in the theory of oscillations, 

Γ(1−𝛼)     0 𝑡(1+𝛼) 

disconnectedness, problems of self-value and many other 

applications in differential and differential equation theories as 
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well as time scales [2]. One may note the third group of 

inequalities that are focused on the concrete functional analysis 

of individual components. Maximum function inequalities 

between Hardy and Littlewood were demonstrated in 1930. The 

Figure 1 shown the fractional-order control system utilised in the 

tuning of PID controllers as a reference model. The function 

open-loop transfer 𝐿(𝑠) is set to (𝛼 ∈ ℝ+): 

contemporary theory and study of partial differential equations 

is mostly based on the right spaces for the analysis and they are 

𝐿(𝑠) = (
𝜔𝑐

 

𝑠 

𝛼 

) -- - - - - - -- - - - - - - - - (4) 

related to the Sobolev theory of embedding and inequalities. For 

an insight into these inequities see Adams. The author established 

inequalities of type Bihari with fractional derivatives. He 

revealed how to use this disparity to demonstrate the limits and 

the global lives of individual families and to identify asymptotic 

behaviour. In we identified a number of non- linear differential 

inequalities with fractional derivatives and suggested application 

for them. Belarbi, S,Dahmani,Z have explored in and created a 

certain number of novel fractional integral inequalities via the 

general operators of Liouville on fractional calculus. Many 

articles investigate the fractional integrals of the Riemann-

Liouville region and present intriguing generalisations of the 

Hermite-Hadamard type. In the author J. Park created concepts 

like Hermite-Hadamard for n time distinctive functions which in 

the second sense were m-convex and s-convex [5]. W.J. Liu, F. 

Qi, B.Y. Xi produced inequalities like Simpson in recent years 

employing improved convex functions. A generalised integrative 

operator with the widespread Mittag-Leffler function has several 

fundamental inequalities: generalisations with various results 

shown. Many writers are currently researching inequalities 

between Riemann- Liouville, Caputo, Hilfer, Canvati and 

fractional integral operators. In reality, uniqueness of the solution 

of the differential equation for a fractional order can be found 

using fractional integral inequalities and upper and lower 

boundaries for solutions to the fractional boundary value 

problem. 

 

Tuning of PID Controllers Using Fractional Calculus 

Concepts: 

The most popular control algorithms in industry are PID 

controllers. The Ziegler-Nichols (Z-N) approach is the most 

popular and is still widely used for determining PID parameters 

among the different systems for tuning PID controllers. It is well 

known that compensated systems that use this approach with 

controllers usually have a step response with a significant 

percentage excess. In addition, only plants with monotonous step 

response are suited by the Z-N heuristics. 

We examine in this section a PID tuning process in order that the 

reaction of the compensated system has a predefined value that 

is practically constantly overflowing. This approach is based on 

a minimum square error integral (ISE) between the unit feedback 

control system's step replies, the open-loop transfer 𝐿(𝑠) function 

provided by a fractional order integrator, and that of a 

compensated PID system. 

Where the frequency |𝐿(𝑗𝜔𝑐)| = 1 is the gain crossover. The 𝛼 
parameter is the curve slope on a log scale and can accept both 

integer and non-integer values. We consider in this research 1 < 

𝛼 < 2 to allow for a fractional oscillation in the output response 

(similar to an underdamped second-order system). This function 

of transfer is also known as the ideal loop transfer function of the 

Bode since in the 1940s Bode studied the construction of 

feedback amplifiers. 

 
 

 
Figure 1: Fractional-order control system with open-loop 

transfer function 𝐿(𝑠). 

Figure 2 provides an illustration of the amplitude and phase 

graphs of 𝐿(𝑠). The amplitude curve is a direct line with a 

constant pitch –20𝛼dB/dec, with a phase curve being a horizontal 

line at −𝛼𝜋/2. The Nyquist curve, arg 𝐿(𝑗𝜔) = 

−𝛼𝜋/2 Rad, is simply the line across the origin. 
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𝑐 

𝑠(𝑠𝛼+𝜔𝛼) 

            
𝑑 

Figure 2:   Bode   diagrams   of   amplitude   and   phase   of 

𝐿(𝑗𝜔) for 1<𝛼<2. 
 

This 𝐿(𝑠) choice provides a closed loop system that is insensitive 

to changes in its desired property. When the gain varies, the 

crossover frequency 𝜔𝑐 will change, but the 𝑃𝑀 = 𝜋(1 − 𝛼/2) 

rad is the phase margin of the system irrespective of the gain 

value. This is shown in the amplitude and phase curves of Figure 

2. 

 
Figure 1 gives the closed loop transfer function of the fractional 

control system 

𝐺(𝑠) =   
𝐿(𝑠)    

=        
1 

, 1 < 𝛼 < 2 - - - - - - - - - 
1+𝐿(𝑠) (𝑠/𝜔 )𝛼+1 

- - - - (5) 

 
 

The unit step response of 𝐺(𝑠) is given by the expression: 

Fractional P Control of a Hexapod Robot: 

 

Walking machines permit the locomotion of another type of cars 

on terrain, which does not require a constant support platform, 

but at the expense of higher leg coordination and control needs. 

Joint level control is normally carried out via a PID-like system 

with position feedback for these robots. Applying FC's theory to 

robotics has recently revealed potential areas for future 

improvements. In this section, different fractional 𝑃𝐷𝛼 are 

compared Tuning of robot controllers for the walking system 

joint control (Figure 4) with 𝑛 = 6 legs, distributed equally on 

each side and having three rotating joints each. The robot 

controllers were tuned [4]. 

 

The joint 𝑗=3 can be either mechanically driven or motorised 

during this research leg (Figure 4). We assume that there is a 

rotating pre-tensioned spring-dashpot connecting leg links 𝐿𝑖2 

and 𝐿𝑖3 in the case of mechanically activated cases. This 

mechanical impedance keeps the angle between both bands when 

𝑦 (𝑡) = 𝐿−1 { 
𝑠 

𝛼 

𝐺(𝑠)} = 𝐿−1 { 𝑐 } = 1 − 
𝑐 

the joint torque is imposed. 

∑∞  
[−(𝜔𝑐𝑡)𝛼]𝑛  

= 1 − 𝐸  [−(𝜔 𝑡)𝛼]   - - - - - - (6) 
 

The hexapod body and foot-ground contact dynamic model is 

𝑛=0 Γ(1+𝛼𝑛) 𝛼 𝑐 
presented in Figure 5. Robot body conformance is recognised 

We use the fractional-order transfer function (5) as the reference 

system in the tuning of PID controllers [3]. We can determine 

the excess shoot and the speed of the output response by order 𝛼 

and crossover frequency 𝜔𝑐 Correspondingly. To this end, we 

take into account the closed-loop system presented in Figure 3 

where the PID and plant transfer functions are 𝐺𝑐(𝑠) and the 

𝐺𝑝(𝑠). 

 
 

 
Figure 3: Closed-loop control system with PID 

controller 𝐺𝐶(𝑠). 

We see that the step reactions exceed the frequency of the 

crossover practically constantly, independently of the fluctuation 

in the plant gain. Therefore, the proposed methodology can 

generate resilient closed-loop systems that can change and take 

steps to show an iso-damping feature. Several systems were 

evaluated to demonstrate good results for the proposed strategy. 

It also was compared with other tuning methods that showed 

similar or higher results. 

because animals walking have a spine that enhances stability and 

promotes locomotion. The robot body is divided into 𝑛 identical 

segments, and the intrabody compliance process is carried out by 

a linear spring-damper system (specified by parameters that 

resemble that of an animal). The ground contact of the robot is 

modelled using a non-linear system, which is based on soil 

mechanics studies for parameters. 

 
 

 

Figure 4: Model of the robot body and foot-ground interaction. 

 

The general architecture of control is shown on the hexapod 

robot. In this work, we examine the impact of various 

implementations of 𝑃𝐷𝛼, 𝛼 ∈ ℜ .Total controllers for 𝐺𝑐1(𝑠) , 

whereas 𝐺𝑐2 is a proportional control with 𝐾𝑝𝑗 = 0. (𝑗 = 1,2,3). 

1 
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Again, we have a 4th-order approximation of the 𝑃𝐷𝛼 method 

performed in a discrete time 

 

∑𝑖=𝑢 𝑎𝑖𝑗 𝑧
−𝑖 

which demands that the flux be laminary. Other methods include 

agent-based models that have the effect of complicated aquifers 

like karstic or fractured rocks. 

𝐺 (𝑧) ≈ 𝐾𝑝 + 𝐾𝛼 
    𝑖=0  Conclusions and Future Scope of Study: 

𝑐1𝑗 𝑗 𝑗 ∑𝑖=𝑢 𝑏 𝑧−𝑖 

𝑖=0     𝑖𝑗 

 

Where 𝐾𝑝𝑗 and 𝐾𝛼𝑖 are the proportional and derivative gains, 

respectively, and 𝛼𝑗 is the fractional-order, for joint 𝑗 . Therefore, 

the classical 𝑃𝐷1 algorithm occurs when the fractional order 

𝛼𝑗 = 1.0 . 
 
 

 
 

Figure 5: Hexapod robot control architecture 

 

Application of fractional calculus 
 

Some application of fictional calculus are given below- 
 

1. Fractional conservation of mass 

2. Fractional Control of a Hexapod Robot 

3. Fractional Dynamics in the Trajectory Control of 

Redundant Manipulators 

4. Heat diffusion 

5. Groundwater flow of water 
 

Application in Groundwater flow of water: 
 

Used in hydrogeology, the mathematical relationship of 

groundwater flow across an aquifer is the groundwater flow. A 

version of diffusion equations similar to that used in heat 

shipment to define heat flow through a solid is provided for the 

transient flow of groundwater (heat conduction). A type of 

Laplace equation, which is a possible flow form and has 

comparable data in several domains, represents the steady-state 

flow of soil. 

The groundwater flow equation is generally computed for a 

small representative elementary volume (REV), in which the 

medium parameters are supposed to be consistent effectively. 

The flux conditions in the relation are described ahead by 

applying the constituent equation termed the Law of Darcy, 

Fractional calculus (FC) goes back to the start of differential 

calculus theory. However, in the recent two decades, FC's 

application has surfaced due to the progress made in chaos, 

revealing subtle links to FC principles. 

FC has recently been a successful scientific and engineering 

research topic, and many scientific fields are paying more 

attention to the FC concepts now. Some work has been carried 

out in dynamic systems theory, although the proposed models 

and algorithms continue to be established at an early stage. This 

article offered a number of case studies on FC-based models and 

control systems that demonstrate the advantages of employing 

FC theory in various research and engineering fields. This article 

explored several physical systems, specifically 

(i) Setting PID controllers utilising fractional 

computer principles; 

(ii) Fragmentary P hexapod robot control; 

(iii) Fragmentary dynamics of trajectory control of 

redundant manipulators; 

(iv) Dissemination of heat; 

(v) Synthesis circuit by means of evolutionary 

algorithms. 

The benefits of this Mathematical Tool have been recognised for 

modelling and controlling such dynamic systems, and the results 

show the importance of fractional computation and drive new 

applications to emerge. 

Although the indication of fractional calculus was started more 

than 300 years before, only just has serious efforts been devoted 

to its study. Still, normal calculus is much more acquainted, and 

more favoured, maybe because its applications are more 

seeming. However, it is the author’s confidence that in addition 

to opening our minds to new branches of thought by satisfying 

the gaps of the normal calculus, fractional calculus has the 

possible of giving intriguing and useful applications in the future. 
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